良民是什么意思| 春五行属什么| 口臭吃什么药效果最好| 慰劳是什么意思| 信佛有什么好处| 嗓子疼感冒吃什么药| soho是什么意思| 摆渡是什么意思| 什么气什么足| 白痰咳嗽用什么药最好| 饵丝是什么| 血脂异常什么意思| 三朵花代表什么意思| 小猪佩奇为什么这么火| 什么是终端| 全身皮肤瘙痒是什么原因引起的| 豆汁是什么味道| 荔枝对身体有什么好处| 降血糖的草都有什么草| 发改委主任什么级别| 令尹是什么官职| usim卡是什么卡| 肝红素高是什么原因| 甲钴胺片是治什么的| 全麦是什么意思| 肝外胆管扩张什么意思| 霸王别姬是什么生肖| 正畸和矫正有什么区别| 小肚鸡肠是什么意思| 鱼子酱是什么东西| 乔迁对联什么时候贴| 喝普洱茶有什么好处| 阴道菌群失调用什么药| 小便尿色黄是什么问题| 黄体酮是什么意思| 铁观音是什么茶| 三板斧是什么意思| 国际是什么意思| 右肺下叶纤维化灶是什么意思| 七月七是什么节| 斯德哥尔摩综合症是什么| 放屁多什么原因| 很轴是什么意思| 吃知柏地黄丸有什么副作用| 治疗勃起困难有什么药| 喝酒肚子疼是什么原因| 土方是什么| 口气臭吃什么能改善| 忧心忡忡是什么意思| 阴沟肠杆菌是什么病| 早餐吃什么比较好| 狗狗皮肤病用什么药| pc什么意思| 芬太尼是什么| 玫瑰茄是什么东西| 总是爱出汗是什么原因| 什么花喜欢磷酸二氢钾| 蝴蝶骨是什么| 亲嘴会传染什么病| 秦昊的父母是干什么的| 冬虫夏草到底是什么| 吴亦凡什么星座| 子水是什么水| 小孩便秘吃什么通便快| 煮肉放什么调料| oa是什么意思| 隐血阳性什么意思| 考虑黄体是什么意思| 卖淫什么意思| 牙髓炎是什么原因引起的| 台风什么时候到上海| 催乳素过高会有什么严重的后果| 什么叫全日制本科| other是什么品牌| 毛囊炎吃什么药| 牛的四个胃分别叫什么| 红薯开花预示着什么| 梦见以前的朋友是什么意思| 过生日送男朋友什么礼物好| 唾液酸苷酶阳性什么意思| 圆寂为什么坐着就死了| 山楂泡水喝有什么好处| pg在医学是什么意思| 不知道为了什么| 男人吃什么补肾壮阳效果最好| 葛粉吃了有什么好处| 什么水果上火| 云彩像什么| 抵抗力差吃什么可以增强抵抗力| 为什么头疼| 脊膜瘤是什么样的病| 孕妇用什么驱蚊最好| 嘴唇起泡是什么原因| 真菌阳性是什么意思| ab血型和o血型的孩子是什么血型| 两眼中间的位置叫什么| 为什么身上会痒| 吃完饭打嗝是什么原因| 赵丽颖原名叫什么| 红萝卜不能和什么一起吃| 腰椎盘突出挂什么科| 四书五经指的是什么| hp是什么单位| 医生为什么喜欢开地塞米松| 什么是肾阴虚和肾阳虚| crpa是什么细菌| 悠悠是什么意思| 什么动物最聪明| 最是什么意思| 散片是什么意思| 什么东西越洗越脏| 柏拉图爱情是什么意思| 鳞状上皮细胞是什么| 蚊虫叮咬涂什么药| 同型半胱氨酸高吃什么| 7月14日什么星座| 灰指甲用什么药治疗| 精液长什么样| loho是什么牌子| 指鹿为马的反义词是什么| 2016年是属什么年| 骨质疏松吃什么钙片| 请问尿路感染吃什么药最好| 挣扎是什么意思| 蝴蝶有什么寓意| 内膜厚是什么原因| 1999年是什么命| 嘴酸是什么原因引起| 灰指甲是什么样子的| mri检查是什么意思| 原汤化原食什么意思| 内分泌代谢科是看什么病的| 小日子是什么意思| 肠澼是什么意思| 嘴巴周围长痘痘是什么原因| 花字五行属什么| 为什么胃疼| 医生为什么穿白大褂| 为什么说秦始皇还活着| 马首是瞻是什么生肖| 尿肌酐高是什么原因| 什么是前奶什么是后奶| 人乳头病毒是什么意思| 刺五加配什么药治失眠| 橄榄绿是什么颜色| 翻什么覆什么| 尿毒症小便有什么症状| zs是什么意思| 什么富什么车| 睡觉总是做梦是什么原因| 肾结石看什么科| 什么玩意儿| 什么是音色| 什么四海| 豆粕是什么东西| 波菜不能和什么一起吃| 在什么后面| 孕酮什么意思| 新生儿什么时候吃ad| 阴道流黄水是什么原因| 姜还是老的辣是什么意思| 牙齿发酸是什么病征兆| 甲是什么生肖| 冰雪什么| 怀孕梦到蛇预示着什么| 一个虫一个离念什么| 电脑长期不关机有什么影响| 晕车喝什么| 脂溢性脱发是什么原因引起的| 为什么会打嗝| 连襟是什么关系| 姑息性化疗什么意思| 苦瓜不能跟什么一起吃| 男人吃生蚝补什么| 顾虑是什么意思| 空调除湿和制冷有什么区别| 支原体吃什么药最有效| 男人少精弱精吃什么补最好| 蛇胆疮是什么引起的| 旺夫脸是什么脸型| 脸上发痒是什么原因| 力挺是什么意思| 猪咳嗽用什么药效果好| 夏威夷果吃了有什么好处| 白玫瑰的花语是什么| 精益求精下一句是什么| 中国文字博大精深什么意思| 鹅什么时候开始下蛋| 济公搓的泥丸叫什么| penis是什么意思| 花枝招展什么意思| 金开什么字| 肝火旺吃什么调理| 珍珠纱是什么面料| 刚做了人流适合吃什么好| 办理社保卡需要什么资料| 烧火棍是什么意思| 荷花和睡莲有什么区别| 四岁属什么生肖| 房颤用什么药| 睡觉多梦是什么原因引起的| 一只脚面肿是什么原因| 聊天是什么意思| 鼻炎是什么| 解辣喝什么| as是什么元素| 浣熊吃什么食物| 什么东西能让皮肤变白| 拉肚子应该吃什么药| 血府逐瘀丸治什么病| 黔驴技穷是什么意思| 胶质瘤是什么病| 老头晕是什么原因引起的| 照字五行属什么| 鲁迅是什么样的人| 中考送什么礼物| 生理盐水是什么东西| 走麦城是什么意思| 盆腔炎挂什么科| 两融余额是什么意思| 孕激素高是什么原因| 怀孕吃什么可以快速流产| 六堡茶是什么茶| 权字五行属什么| 孩子咳嗽吃什么饭菜好| 条索灶是什么意思| 经常头疼什么原因| 莞尔是什么意思| 舌苔开裂是什么原因呢| 打耳洞不能吃什么| 人心叵测是什么意思| 白果有什么功效与作用| 通告是什么意思| 尿ph值高是什么意思| 什么病不能吃绿豆| 自欺欺人是什么生肖| com代表什么意思| 任性什么意思| 助教是干什么的| 边界欠清是什么意思| 为什么不孕不育| 仙人板板 是什么意思| 胃胀不消化吃什么药好| 眼睛干涩是什么原因| 为什么会突然不爱了| 胃穿孔有什么症状| 什么的街道| 女生是什么意思| 秦朝灭亡后是什么朝代| 卒中什么意思| 小孩晚上睡不着是什么原因| 民考民是什么意思| 64年属什么的| 95年什么生肖| 陈旧性心梗是什么意思| 基友什么意思| 神隐是什么意思| 分明的意思是什么| 身体酸痛什么原因| 青春痘长什么样| 八哥鸟吃什么| 心电图逆钟向转位是什么意思| 癸水是什么| 南极为什么比北极冷| 百度Jump to content

《苍蓝革命之女武神》被评T级 轻微暴力裸露元素

From Wikipedia, the free encyclopedia
Amount of substance
Approximately 1 mol amount of substance based on 12 grams of carbon-12
Common symbols
n
SI unitmol
Dimension
百度 球迷感叹到生命无常、生命太脆弱了,原先在一起踢球的队友,说没就没,根本无法接受这一事实,克罗地亚的足协已经向这位球员的家人表示慰问,但愿今后不再有类似事情的发生,确实太可惜了,这位小伙子才25岁,人生才刚刚开始绽放,但却遇到这样的事情,逝者安息吧。

In chemistry, the amount of substance (symbol n) in a given sample of matter is defined as a ratio (n = N/NA) between the number of elementary entities (N) and the Avogadro constant (NA). The unit of amount of substance in the International System of Units is the mole (symbol: mol), a base unit.[1] Since 2019, the mole has been defined such that the value of the Avogadro constant NA is exactly 6.02214076×1023 mol?1, defining a macroscopic unit convenient for use in laboratory-scale chemistry. The elementary entities are usually molecules, atoms, ions, or ion pairs of a specified kind. The particular substance sampled may be specified using a subscript or in parentheses, e.g., the amount of sodium chloride (NaCl) could be denoted as nNaCl or n(NaCl). Sometimes, the amount of substance is referred to as the chemical amount or, informally, as the "number of moles" in a given sample of matter. The amount of substance in a sample can be calculated from measured quantities, such as mass or volume, given the molar mass of the substance or the molar volume of an ideal gas at a given temperature and pressure.

Usage

[edit]

Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope. As a consequence, the mass of one mole of a chemical compound in grams (i.e., its molar mass in g/mol or kg/kmol), is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number (historically exact for carbon-12 with a molar mass of 12 g/mol). For example, a molecule of water has a mass of about 18.0153 daltons on average, whereas a mole of water (which contains 6.02214076×1023 water molecules) has a total mass of about 18.0153 grams.

In chemistry, because of the law of multiple proportions, it is often much more convenient to work with amounts of substances (that is, number of moles or of molecules) than with masses (grams) or volumes (liters). For example, the chemical fact "1 molecule of oxygen (O
2
) will react with 2 molecules of hydrogen (H
2
) to make 2 molecules of water (H2O)" can also be stated as "1 mole of O2 will react with 2 moles of H2 to form 2 moles of water". The same chemical fact, expressed in terms of masses, would be "32.0 g of oxygen (1 mole of O
2
) will react with approximately 4.0 g hydrogen (2 moles of H
2
) to make approximately 36.0 g of water (2 moles of H2O)" (and the numbers would depend on the isotopic composition of the reagents). In terms of volume, the numbers would depend on the pressure and temperature of the reagents and products, although the volume of an ideal gas is proportional to the amount in moles or number of molecules at constant temperature and pressure. For the same reasons, the concentrations of reagents and products in solution are often specified in moles per liter, rather than grams per liter.

The amount of substance is also a convenient concept in thermodynamics. For example, the pressure of a certain quantity of a noble gas in a recipient of a given volume, at a given temperature, is directly related to the number of molecules in the gas (through the ideal gas law), not to its mass.

This technical sense of the term "amount of substance" should not be confused with the general sense of "amount" in the English language. The latter may refer to other measurements such as mass or volume,[2] rather than the number of particles. There are proposals to replace "amount of substance" with more easily-distinguishable terms, such as enplethy[3] and stoichiometric amount.[2]

The IUPAC recommends that "amount of substance" should be used instead of "number of moles", just as the quantity mass should not be called "number of (kilo)grams".[3]

Nature of the particles

[edit]

To avoid ambiguity, the nature of the particles should be specified in any measurement of the amount of substance: thus, a sample of 1 mol of molecules of oxygen (O
2
) has a mass of about 32.00 g, whereas a sample of 1 mol of atoms of oxygen (O) has a mass of about 16.00 g.[4][5]

Derived quantities

[edit]

Molar quantities (per mole)

[edit]
A diagram comparing moles and molar masses of iron and gold samples that have equal masses

The quotient of some extensive physical quantity of a homogeneous sample by its amount of substance is an intensive property of the substance, usually named by the prefix "molar" or the suffix "per mole".[6]

For example, the quotient of the mass of a sample by its amount of substance is its molar mass, for which the SI unit kilogram per mole or gram per mole may be used. This is about 18.015 g/mol for water, and 55.845 g/mol for iron. Similarly for volume, one gets the molar volume, which is about 18.069 millilitres per mole for liquid water and 7.092 mL/mol for iron at room temperature. From the heat capacity, one gets the molar heat capacity, which is about 75.385 J/(K?mol) for water and about 25.10 J/(K?mol) for iron.

Molar mass and molar volume

[edit]

The molar mass () of a substance is the ratio of the mass () of a sample of that substance to its amount of substance (): . The amount of substance is given as the number of moles in the sample. For most practical purposes, the numerical value of the molar mass in grams per mole is the same as that of the mean mass of one molecule or formula unit of the substance in daltons, as the mole was historically defined such that the molar mass constant was exactly 1 g/mol. Thus, given the molecular mass or formula mass in daltons, the same number in grams gives an amount very close to one mole of the substance. For example, the average molecular mass of water is about 18.015 Da and the molar mass of water is about 18.015 g/mol. This allows for accurate determination of the amount in moles of a substance by measuring its mass and dividing by the molar mass of the compound: .[7] For example, 100 g of water is about 5.5509 mol of water.

The molar mass of a substance depends not only on its molecular formula, but also on the distribution of isotopes of each chemical element present in it. For example, the molar mass of calcium-40 is 39.96259098(22) g/mol, whereas the molar mass of calcium-42 is 41.95861801(27) g/mol, and of calcium with the normal isotopic mix is 40.078(4) g/mol.

Other methods of determining the amount of substance include the use of the molar volume () for ideal gases at a given temperature and pressure (through the relationship ) or the measurement of electric charge (using Faraday's laws of electrolysis).[7] For example, the molar volume of an ideal gas under standard conditions of 0 °C (273.15 K) and 1 atm (101.325 kPa) is about 22.414 L/mol, and 1 m3 of an ideal gas under the same conditions is about 44.615 mol of gas.

Amount (molar) concentration (moles per liter)

[edit]

Another important derived quantity is the molar concentration () (also called amount of substance concentration,[8] amount concentration, or substance concentration,[9] especially in clinical chemistry), defined as the amount in moles () of a specific substance (solute in a solution or component of a mixture), divided by the volume () of the solution or mixture: .

The standard SI unit of this quantity is mol/m3, although more practical units are commonly used, such as mole per liter (mol/L, equivalent to mol/dm3). For example, the amount concentration of sodium chloride in ocean water is typically about 0.599 mol/L.

The denominator is the volume of the solution, not of the solvent. Thus, for example, one liter of standard vodka contains about 0.40 L of ethanol (315 g, 6.85 mol) and 0.60 L of water. The amount concentration of ethanol is therefore (6.85 mol of ethanol)/(1 L of vodka) = 6.85 mol/L, not (6.85 mol of ethanol)/(0.60 L of water), which would be 11.4 mol/L.

In chemistry, it is customary to read the unit "mol/L" as molar, and denote it by the symbol "M" (both following the numeric value). Thus, for example, each liter of a "0.5 molar" or "0.5 M" solution of urea (CH
4
N
2
O
) in water contains 0.5 moles of that molecule. By extension, the amount concentration is also commonly called the molarity of the substance of interest in the solution. However, as of May 2007, these terms and symbols are not condoned by IUPAC.[10]

This quantity should not be confused with the mass concentration, which is the mass of the substance of interest divided by the volume of the solution (about 35 g/L for sodium chloride in ocean water).

Amount (molar) fraction (moles per mole)

[edit]

Confusingly, the amount (molar) concentration should also be distinguished from the molar fraction (also called mole fraction or amount fraction) of a substance in a mixture (such as a solution), which is the number of moles of the compound in one sample of the mixture, divided by the total number of moles of all components. For example, if 20 g of NaCl is dissolved in 100 g of water, the amounts of the two substances in the solution will be (20 g)/(58.443 g/mol) = 0.34221 mol and (100 g)/(18.015 g/mol) = 5.5509 mol, respectively; and the molar fraction of NaCl will be 0.34221/(0.34221 + 5.5509) = 0.05807.

In a mixture of gases, the partial pressure of each component is proportional to its molar fraction.

History

[edit]

The alchemists, and especially the early metallurgists, probably had some notion of amount of substance, but there are no surviving records of any generalization of the idea beyond a set of recipes. In 1758, Mikhail Lomonosov questioned the idea that mass was the only measure of the quantity of matter,[11] but he did so only in relation to his theories on gravitation. The development of the concept of amount of substance was coincidental with, and vital to, the birth of modern chemistry.

  • 1777: Wenzel publishes Lessons on Affinity, in which he demonstrates that the proportions of the "base component" and the "acid component" (cation and anion in modern terminology) remain the same during reactions between two neutral salts.[12]
  • 1789: Lavoisier publishes Treatise of Elementary Chemistry, introducing the concept of a chemical element and clarifying the Law of conservation of mass for chemical reactions.[13]
  • 1792: Richter publishes the first volume of Stoichiometry or the Art of Measuring the Chemical Elements (publication of subsequent volumes continues until 1802). The term "stoichiometry" is used for the first time. The first tables of equivalent weights are published for acid–base reactions. Richter also notes that, for a given acid, the equivalent mass of the acid is proportional to the mass of oxygen in the base.[12]
  • 1794: Proust's Law of definite proportions generalizes the concept of equivalent weights to all types of chemical reaction, not simply acid–base reactions.[12]
  • 1805: Dalton publishes his first paper on modern atomic theory, including a "Table of the relative weights of the ultimate particles of gaseous and other bodies".[14]
    The concept of atoms raised the question of their weight. While many were skeptical about the reality of atoms, chemists quickly found atomic weights to be an invaluable tool in expressing stoichiometric relationships.
  • 1808: Publication of Dalton's A New System of Chemical Philosophy, containing the first table of atomic weights (based on H = 1).[15]
  • 1809: Gay-Lussac's Law of combining volumes, stating an integer relationship between the volumes of reactants and products in the chemical reactions of gases.[16]
  • 1811: Avogadro hypothesizes that equal volumes of different gases (at same temperature and pressure) contain equal numbers of particles, now known as Avogadro's law.[17]
  • 1813/1814: Berzelius publishes the first of several tables of atomic weights based on the scale of m(O) = 100.[12][18][19]
  • 1815: Prout publishes his hypothesis that all atomic weights are integer multiple of the atomic weight of hydrogen.[20] The hypothesis is later abandoned given the observed atomic weight of chlorine (approx. 35.5 relative to hydrogen).
  • 1819: Dulong–Petit law relating the atomic weight of a solid element to its specific heat capacity.[21]
  • 1819: Mitscherlich's work on crystal isomorphism allows many chemical formulae to be clarified, resolving several ambiguities in the calculation of atomic weights.[12]
  • 1834: Clapeyron states the ideal gas law.[22]
    The ideal gas law was the first to be discovered of many relationships between the number of atoms or molecules in a system and other physical properties of the system, apart from its mass. However, this was not sufficient to convince all scientists of the existence of atoms and molecules, many considered it simply being a useful tool for calculation.
  • 1834: Faraday states his Laws of electrolysis, in particular that "the chemical decomposing action of a current is constant for a constant quantity of electricity".[23]
  • 1856: Kr?nig derives the ideal gas law from kinetic theory.[24] Clausius publishes an independent derivation the following year.[25]
  • 1860: The Karlsruhe Congress debates the relation between "physical molecules", "chemical molecules" and atoms, without reaching consensus.[26]
  • 1865: Loschmidt makes the first estimate of the size of gas molecules and hence of number of molecules in a given volume of gas, now known as the Loschmidt constant.[27]
  • 1886: van't Hoff demonstrates the similarities in behaviour between dilute solutions and ideal gases.
  • 1886: Eugen Goldstein observes discrete particle rays in gas discharges, laying the foundation of mass spectrometry, a tool subsequently used to establish the masses of atoms and molecules.
  • 1887: Arrhenius describes the dissociation of electrolyte in solution, resolving one of the problems in the study of colligative properties.[28]
  • 1893: First recorded use of the term mole to describe a unit of amount of substance by Ostwald in a university textbook.[29]
  • 1897: First recorded use of the term mole in English.[30]
  • By the turn of the twentieth century, the concept of atomic and molecular entities was generally accepted, but many questions remained, not least the size of atoms and their number in a given sample. The concurrent development of mass spectrometry, starting in 1886, supported the concept of atomic and molecular mass and provided a tool of direct relative measurement.
  • 1905: Einstein's paper on Brownian motion dispels any last doubts on the physical reality of atoms, and opens the way for an accurate determination of their mass.[31]
  • 1909: Perrin coins the name Avogadro constant and estimates its value.[32]
  • 1913: Discovery of isotopes of non-radioactive elements by Soddy[33] and Thomson.[34]
  • 1914: Richards receives the Nobel Prize in Chemistry for "his determinations of the atomic weight of a large number of elements".[35]
  • 1920: Aston proposes the whole number rule, an updated version of Prout's hypothesis.[36]
  • 1921: Soddy receives the Nobel Prize in Chemistry "for his work on the chemistry of radioactive substances and investigations into isotopes".[37]
  • 1922: Aston receives the Nobel Prize in Chemistry "for his discovery of isotopes in a large number of non-radioactive elements, and for his whole-number rule".[38]
  • 1926: Perrin receives the Nobel Prize in Physics, in part for his work in measuring the Avogadro constant.[39]
  • 1959/1960: Unified atomic mass unit scale based on m(12C) = 12 u adopted by IUPAP and IUPAC.[40]
  • 1968: The mole is recommended for inclusion in the International System of Units (SI) by the International Committee for Weights and Measures (CIPM).[41]
  • 1972: The mole is approved as the SI base unit of amount of substance.[41]
  • 2019: The mole is redefined in the SI as "the amount of substance of a system that contains 6.02214076×1023 specified elementary entities".[1]

See also

[edit]

References

[edit]
  1. ^ a b The International System of Units (PDF), V3.01 (9th ed.), International Bureau of Weights and Measures, Aug 2024, ISBN 978-92-822-2272-0 p. 134
  2. ^ a b Giunta, Carmen J. (2016). "What's in a Name? Amount of Substance, Chemical Amount, and Stoichiometric Amount". Journal of Chemical Education. 93 (4): 583–86. Bibcode:2016JChEd..93..583G. doi:10.1021/acs.jchemed.5b00690.
  3. ^ a b E.R. Cohen et al. (2008). Quantities, Units and Symbols in Physical Chemistry : IUPAC Green Book. 3rd Edition, 2nd Printing. Cambridge: IUPAC & RSC Publishing. ISBN 0-85404-433-7. p. 4. Electronic version.
  4. ^ IUPAC, Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "amount of substance, n". doi:10.1351/goldbook.A00297
  5. ^ E.R. Cohen et al. (2008). Quantities, Units and Symbols in Physical Chemistry : IUPAC Green Book. 3rd Edition, 2nd Printing. Cambridge: IUPAC & RSC Publishing. ISBN 0-85404-433-7. p. 53-54. Electronic version.
  6. ^ E.R. Cohen et al. (2008). Quantities, Units and Symbols in Physical Chemistry : IUPAC Green Book. 3rd Edition, 2nd Printing. Cambridge: IUPAC & RSC Publishing. ISBN 0-85404-433-7. p. 6. Electronic version.
  7. ^ a b International Bureau of Weights and Measures. Realising the mole Archived 2025-08-08 at the Wayback Machine. Retrieved 25 September 2008.
  8. ^ IUPAC, Compendium of Chemical Terminology, 5th ed. (the "Gold Book") (2025). Online version: (2006–) "amount-of-substance concentration". doi:10.1351/goldbook.A00298
  9. ^ International Union of Pure and Applied Chemistry (1996). "Glossary of Terms in Quantities and Units in Clinical Chemistry" (PDF). Pure Appl. Chem. 68: 957–1000. doi:10.1351/pac199668040957. S2CID 95196393.
  10. ^ E.R. Cohen et al. (2008). Quantities, Units and Symbols in Physical Chemistry : IUPAC Green Book. 3rd Edition, 2nd Printing. Cambridge: IUPAC & RSC Publishing. ISBN 0-85404-433-7. p. 48 (n. 15). Electronic version.
  11. ^ Lomonosov, Mikhail (1970). "On the Relation of the Amount of Material and Weight". In Leicester, Henry M. (ed.). Mikhail Vasil'evich Lomonosov on the Corpuscular Theory. Cambridge, MA: Harvard University Press. pp. 224–33 – via Internet Archive.
  12. ^ a b c d e "Atome". Grand dictionnaire universel du XIXe siècle. 1. Paris: Pierre Larousse: 868–73. 1866.. (in French)
  13. ^ Lavoisier, Antoine (1789). Traité élémentaire de chimie, présenté dans un ordre nouveau et d'après les découvertes modernes. Paris: Chez Cuchet.. (in French)
  14. ^ Dalton, John (1805). "On the Absorption of Gases by Water and Other Liquids". Memoirs of the Literary and Philosophical Society of Manchester. 2nd Series. 1: 271–87.
  15. ^ Dalton, John (1808). A New System of Chemical Philosophy. Manchester: London.
  16. ^ Gay-Lussac, Joseph Louis (1809). "Memoire sur la combinaison des substances gazeuses, les unes avec les autres". Mémoires de la Société d'Arcueil. 2: 207. English translation.
  17. ^ Avogadro, Amedeo (1811). "Essai d'une maniere de determiner les masses relatives des molecules elementaires des corps, et les proportions selon lesquelles elles entrent dans ces combinaisons". Journal de Physique. 73: 58–76. English translation.
  18. ^ Excerpts from Berzelius' essay: Part II; Part III.
  19. ^ Berzelius' first atomic weight measurements were published in Swedish in 1810: Hisinger, W.; Berzelius, J.J. (1810). "Forsok rorande de bestamda proportioner, havari den oorganiska naturens bestandsdelar finnas forenada". Afh. Fys., Kemi Mineral. 3: 162.
  20. ^ Prout, William (1815). "On the relation between the specific gravities of bodies in their gaseous state and the weights of their atoms". Annals of Philosophy. 6: 321–30.
  21. ^ Petit, Alexis Thérèse; Dulong, Pierre-Louis (1819). "Recherches sur quelques points importants de la Théorie de la Chaleur". Annales de Chimie et de Physique. 10: 395–413. English translation
  22. ^ Clapeyron, émile (1834). "Puissance motrice de la chaleur". Journal de l'école Royale Polytechnique. 14 (23): 153–90.
  23. ^ Faraday, Michael (1834). "On Electrical Decomposition". Philosophical Transactions of the Royal Society. 124: 77–122. doi:10.1098/rstl.1834.0008. S2CID 116224057.
  24. ^ Kr?nig, August (1856). "Grundzüge einer Theorie der Gase". Annalen der Physik. 99 (10): 315–22. Bibcode:1856AnP...175..315K. doi:10.1002/andp.18561751008.
  25. ^ Clausius, Rudolf (1857). "Ueber die Art der Bewegung, welche wir W?rme nennen". Annalen der Physik. 176 (3): 353–79. Bibcode:1857AnP...176..353C. doi:10.1002/andp.18571760302.
  26. ^ Wurtz's Account of the Sessions of the International Congress of Chemists in Karlsruhe, on 3, 4, and 5 September 1860.
  27. ^ Loschmidt, J. (1865). "Zur Gr?sse der Luftmoleküle". Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien. 52 (2): 395–413. English translation Archived February 7, 2006, at the Wayback Machine.
  28. ^ Arrhenius, Svante (1887). Zeitschrift für Physikalische Chemie. 1: 631.{{cite journal}}: CS1 maint: untitled periodical (link) English translation Archived 2025-08-08 at the Wayback Machine.
  29. ^ Ostwald, Wilhelm (1893). Hand- und Hilfsbuch zur ausführung physiko-chemischer Messungen. Leipzig: W. Engelmann.
  30. ^ Helm, Georg (1897). The Principles of Mathematical Chemistry: The Energetics of Chemical Phenomena. (Transl. Livingston, J.; Morgan, R.). New York: Wiley. pp. 6.
  31. ^ Einstein, Albert (1905). "über die von der molekularkinetischen Theorie der W?rme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen". Annalen der Physik. 17 (8): 549–60. Bibcode:1905AnP...322..549E. doi:10.1002/andp.19053220806.
  32. ^ Perrin, Jean (1909). "Mouvement brownien et réalité moléculaire". Annales de Chimie et de Physique. 8e Série. 18: 1–114. Extract in English, translation by Frederick Soddy.
  33. ^ Soddy, Frederick (1913). "The Radio-elements and the Periodic Law". Chemical News. 107: 97–99.
  34. ^ Thomson, J.J. (1913). "Rays of positive electricity". Proceedings of the Royal Society A. 89 (607): 1–20. Bibcode:1913RSPSA..89....1T. doi:10.1098/rspa.1913.0057.
  35. ^ S?derbaum, H.G. (November 11, 1915). Statement regarding the 1914 Nobel Prize in Chemistry.
  36. ^ Aston, Francis W. (1920). "The constitution of atmospheric neon". Philosophical Magazine. 39 (6): 449–55. doi:10.1080/14786440408636058.
  37. ^ S?derbaum, H.G. (December 10, 1921). Presentation Speech for the 1921 Nobel Prize in Chemistry.
  38. ^ S?derbaum, H.G. (December 10, 1922). Presentation Speech for the 1922 Nobel Prize in Chemistry.
  39. ^ Oseen, C.W. (December 10, 1926). Presentation Speech for the 1926 Nobel Prize in Physics.
  40. ^ Holden, Norman E. (2004). "Atomic Weights and the International Committee – A Historical Review". Chemistry International. 26 (1): 4–7.
  41. ^ a b International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), pp. 114–15, ISBN 92-822-2213-6, archived (PDF) from the original on 2025-08-08, retrieved 2025-08-08
什么叫间质性肺病 痰饮是什么意思 什么的教室填空 孕妇什么东西不能吃 牛黄清心丸治什么病
语文是什么 虎鼠不结亲是什么意思 吃什么胎儿眼睛黑又亮 什么鱼清蒸最好吃 锦鲤可以和什么鱼混养
等不到天黑烟火不会太完美什么歌 窦房结内游走性心律是什么意思 什么是免疫组化检查 容易感冒的人缺什么 鱼肝油又叫什么名字
三sprit是什么牌子 检察长是什么级别 筛选是什么意思 Zucchini是什么意思 大败毒胶囊主治什么病
脾大是什么原因造成的hcv8jop4ns5r.cn 带牙套是什么意思hcv8jop0ns7r.cn 白目是什么意思hcv8jop1ns9r.cn 摩羯座女和什么星座最配hcv9jop3ns4r.cn 豆蔻年华是什么意思hcv8jop0ns9r.cn
奔富红酒属于什么档次dayuxmw.com 吃什么排铅hcv9jop5ns5r.cn pubg什么意思0297y7.com hospital是什么意思hcv9jop3ns1r.cn 天蓝色是什么颜色hcv8jop8ns1r.cn
背疽是什么病hcv8jop0ns3r.cn 游泳对身体有什么好处hcv9jop6ns4r.cn 即兴表演是什么意思hcv8jop2ns1r.cn 锦绣未央什么意思sscsqa.com 斯德哥尔摩综合征是什么gysmod.com
女人下巴长痘痘是什么原因hcv9jop6ns8r.cn joeone是什么牌子hcv7jop5ns3r.cn 动销是什么意思hcv9jop4ns8r.cn 突然不硬是什么原因hcv9jop2ns0r.cn 胃反酸吃什么药最好hcv9jop5ns3r.cn
百度