门神是什么意思| 什么意思啊| 男外科都检查什么| 嗔什么意思| 臭屁多是什么原因| 香叶是什么树叶| 葬礼穿什么衣服| 什么的神色| 水蛭是什么| 破日是什么意思| 肿气肿用什么药比较好| 什么的琴声| 柳树代表什么生肖| 小孩出汗多是什么原因造成的| 考编制需要什么条件| 肚子不舒服吃什么药| 吊膀子是什么意思| 肠化生是什么症状| exr是什么牌子| 人为什么会怕鬼| 胳膊肘疼痛是什么原因| 紫色搭配什么颜色| 精液是什么| 穷的生肖指什么生肖| lgm是什么意思| 7.6什么星座| 保重适合对什么人说| 3月3日什么星座| 21三体高风险是什么意思| 什么东西不能托运| tg是什么指标| 订婚需要准备什么| 银饰变黑是什么原因| 绿豆不能跟什么一起吃| 70年出生属什么生肖| 天蝎座男是什么性格| 三阳开泰是什么生肖| 气短气喘吃什么药| 成人发烧吃什么退烧药| 学架子鼓有什么好处| 一落千丈是什么生肖| 吃藕粉对身体有什么好处| 梦见打老虎是什么预兆| 为什么会有黑头| 毛重是什么| 知柏地黄丸对男性功能有什么帮助| 马天尼是什么酒| 绿对什么| 发高烧是什么原因引起的| 白羊座是什么星象| 什么是免冠照片| 婴儿补钙什么牌子的好| 为什么有白头发| 编程是什么专业| 比干是什么神| 千年修炼是什么生肖| 玻璃体混浊吃什么药好| 公务员五行属什么| 宫颈糜烂用什么药| 痰湿是什么意思| 心悸是什么原因造成的呢| 人类是什么时候出现的| 大脑记忆力下降是什么原因| 2030年属什么生肖| spi是什么意思| 清鼻涕是什么感冒| 碘酸钾是什么| 胆囊切除后有什么影响| 楷字五行属什么| 预谋是什么意思| 无病呻吟是什么意思| 朝鲜钱币叫什么| 大v什么意思| uspoloassn是什么牌子| TA什么意思| 心度高血压是什么意思| 平衡液又叫什么名字| 七十岁老人装什么牙合适| 梦见被熊追是什么意思| 下午1点是什么时辰| 子宫腺肌症吃什么药| 盆腔炎吃什么药| 营长是什么军衔| 奔跑吧 什么时候开播| 织女是什么意思| 梦见很多小孩是什么意思| 什么是腐女| 樱桃什么季节成熟| 战狼三什么时候上映| 中午吃什么菜| 肚子疼是为什么| 暗送秋波是什么意思| 来月经为什么会肚子痛| 脖子粗大是什么病的症状| 御姐范是什么意思| 咳嗽白痰是什么原因| 青光眼有什么症状| 口腔出血是什么病征兆| 农字五行属什么| 善存什么时间吃比较好| 双子女和什么星座最配| palladium是什么牌子| 弥勒佛为什么是未来佛| 吃完油炸的东西后吃什么化解| 瑞什么意思| 未病是什么意思| 1025是什么星座| 腿抽筋用什么药| ABB式的词语有什么| 46属什么| 6月29日什么星座| 吃什么白细胞升的最快| 玉米吃了有什么好处| 产后复查挂什么科| 行了是什么意思| 血清铁蛋白是检查什么| 哽咽是什么意思| 高烧吃什么药退烧快| 蚊子为什么不咬我| 机械表是什么意思| 总是打嗝是什么原因| 什么叫痛风| 月牙代表什么意思| 小鸟为什么会飞| 吃什么不便秘| 烤箱可以烤些什么东西| 脂肪肝什么意思| 我追呀追呀是什么歌曲| 全麦是什么| 脸上反复长痘是什么原因| 水鱼是什么意思| 杨梅和什么不能一起吃| 胡萝卜富含什么维生素| 什么人容易得焦虑症| 肺结节不能吃什么食物| 过生日吃什么菜| 新生儿呛奶是什么原因引起的| 趋利避害是什么意思| mds医学上是什么意思| 前列腺实质回声欠均匀什么意思| 宫缩什么感觉| 屁股上长痘痘是什么情况| 肽有什么作用| 脚趾麻木是什么病先兆| 10月18日什么星座| 手麻抽筋是什么原因引起的| 三九胃泰治什么胃病效果好| 什么是体外受精| 腰椎钙化是什么意思| 什么叫西米| 狗狗犬窝咳吃什么药| 斜率是什么| sly是什么牌子| 结扎什么意思| 七月一号是什么节| 腮腺炎吃什么药好| 扁平足是什么| 医生说忌辛辣是指什么| 什么叫中位数| 女性更年期在什么年龄段| 农历七月份是什么星座| 疏风解表的意思是什么| 神经内科和神经外科有什么区别| 硫酸羟氯喹片是治什么病| 琅玕是什么意思| 正常人吃叶酸有什么好处| 用你的手解我的锁是什么歌| 什么水果对皮肤好| 山人是什么意思| 中国最大的湖泊是什么湖| 宝宝头大是什么原因| 8月19号是什么星座| 杀青原指什么| 鼻涕倒流到咽喉老吐痰吃什么药能根治| 月经来头疼是什么原因引起的| 小便憋不住尿裤子是什么情况| 7月26日什么星座| 身上起小红点是什么原因| 狗哭了代表什么预兆| 血糖高是什么意思| 辅酶q10是什么| 意念是什么| 摩羯座什么时候| 煞是什么意思| 菠菜是什么季节的菜| 让心归零是什么意思| 剃光头有什么好处| 堃什么意思| 震慑是什么意思| 巳时五行属什么| hg是什么元素| 什么叫柞蚕丝| 火龙果对身体有什么好处| 喝醋有什么好处| 婴儿湿疹不能吃什么| 鬼见愁是什么意思| 手和脚发麻是什么原因| 死后是什么感觉| 小孩上火吃什么药| 稀奶油是什么奶油| 92年的猴是什么命| 为什么无缘无故流鼻血| 冠状ct能查什么| 匹维溴铵片治什么病| dw是什么牌子的手表| 痛风吃什么好| 星星是什么| 关节退变什么意思| 中午适合吃什么| 尿液可以检查出什么| 1971年属猪的是什么命| 血压过低有什么危害| 舌苔白色是什么原因| 伟哥叫什么| 戊肝阳性是什么意思| 扁桃体发炎吃什么药效果最好| 7.11是什么日子| 脑供血不足会导致什么后果| 手机暂停服务是什么意思| 婴儿42天检查什么项目| 睡眠好的人说明什么| 怀孕初期要注意什么| 害是什么意思| 自来水是什么水| 散光跟近视有什么区别| 血管瘤是什么| 徐娘半老是什么意思| 脓疱疮是什么原因引起的| 身体出汗是什么原因| 车间管理人员工资计入什么科目| 马来西亚人为什么会说中文| 爱有什么用| 脚气用什么洗脚| 大小姐是什么意思| 警察两杠一星是什么级别| 西湖醋鱼是什么菜系| 吕布为什么叫三姓家奴| 腰痛看什么科| 什么运动使人脸部年轻| lv属于什么档次| 艸是什么意思| 腹部b超可以检查什么| 生活质量是什么意思| 大便不成形是什么原因造成的| 厥是什么意思| 什么的回答| 4月10号什么星座| 血清果糖胺测定是什么| 脉压是什么意思| 河粉为什么叫河粉| 喉咙干痒是什么原因| 断层是什么意思| 智商140是什么水平| 卫生湿巾是干什么用的| 属鸡在脖子上戴什么好| 胎儿没有胎心是什么原因| mcu是什么| 什么虫子咬了会起水泡| 痛风什么原因引起| 卡鱼刺挂什么科| 谷丙转氨酶什么意思| 什么是凌汛| 高血压吃什么菜| 造影是什么检查| 百度Jump to content

女婴服用“伟哥”遭吐槽 超说明书用药缺乏“国标”

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by N7o2h3 (talk | contribs) at 20:56, 5 February 2024 (Updated a citation). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
Many conspicuous fungi such as the fly agaric (upper left) form ectomycorrhiza (upper right) with tree rootlets. Arbuscular mycorrhiza (lower left) are very common in plants, including crop species such as wheat (lower right)
百度 消防用水1000米一泵到顶尽管各类消防车的举升高度不断刷新,但就目前的技术而言,消防车一般能抵达的最大高度为200米,超过200米的燃烧部分,只能通过建筑内部的固定灭火设备进行扑救,因此建筑物内部供水系统的可靠性至关重要。

A mycorrhiza (from Greek μ?κη? mykēs, "fungus", and ??ζα rhiza, "root"; pl.: mycorrhizae, mycorrhiza or mycorrhizas[1]) is a symbiotic association between a fungus and a plant.[2] The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

In a mycorrhizal association, the fungus colonizes the host plant's root tissues, either intracellularly as in arbuscular mycorrhizal fungi, or extracellularly as in ectomycorrhizal fungi.[3] The association is normally mutualistic. In particular species, or in particular circumstances, mycorrhizae may have a parasitic association with host plants.[4]

Definition

A mycorrhiza is a symbiotic association between a green plant and a fungus. The plant makes organic molecules by photosynthesis and supplies them to the fungus in the form of sugars or lipids, while the fungus supplies the plant with water and mineral nutrients, such as phosphorus, taken from the soil. Mycorrhizas are located in the roots of vascular plants, but mycorrhiza-like associations also occur in bryophytes[5] and there is fossil evidence that early land plants that lacked roots formed arbuscular mycorrhizal associations.[6] Most plant species form mycorrhizal associations, though some families like Brassicaceae and Chenopodiaceae cannot. Different forms for the association are detailed in the next section. The most common is the arbuscular type that is present in 70% of plant species, including many crop plants such as cereals and legumes.[7]

Evolution

Fossil and genetic evidence indicate that mycorrhizae are ancient, potentially as old as the terrestrialization of plants. Genetic evidence indicates that all land plants share a single common ancestor,[8] which appears to have quickly adopted mycorrhizal symbiosis, and research suggests that proto-mycorrhizal fungi were a key factor enabling plant terrestrialization.[9] The 400 million year old Rhynie chert contains an assemblage of fossil plants preserved in sufficient detail that arbuscular mycorrhizae have been observed in the stems of Aglaophyton major, giving a lower bound for how late mycorrhizal symbiosis may have developed.[6] Ectomycorrhizae developed substantially later, during the Jurassic period, while most other modern mycorrhizal families, including orchid and erchoid mycorrhizae, date to the period of angiosperm radiation in the Cretaceous period.[10] There is genetic evidence that the symbiosis between legumes and nitrogen-fixing bacteria is an extension of mycorrhizal symbiosis.[11] The modern distribution of mycorrhizal fungi appears to reflect an increasing complexity and competition in root morphology associated with the dominance of angiosperms in the Cenozoic Era, characterized by complex ecological dynamics between species.[12]

Types

Mycorrhizas are commonly divided into ectomycorrhizas and endomycorrhizas. The two types are differentiated by the fact that the hyphae of ectomycorrhizal fungi do not penetrate individual cells within the root, while the hyphae of endomycorrhizal fungi penetrate the cell wall and invaginate the cell membrane.[13][14] Endomycorrhiza includes arbuscular, ericoid, and orchid mycorrhiza, while arbutoid mycorrhizas can be classified as ectoendomycorrhizas. Monotropoid mycorrhizas form a special category.

Ectomycorrhiza

Beech is ectomycorrhizal
Leccinum aurantiacum, an ectomycorrhizal fungus

Ectomycorrhizas, or EcM, are symbiotic associations between the roots of around 10% of plant families, mostly woody plants including the birch, dipterocarp, eucalyptus, oak, pine, and rose[15] families, orchids,[16] and fungi belonging to the Basidiomycota, Ascomycota, and Zygomycota. Some EcM fungi, such as many Leccinum and Suillus, are symbiotic with only one particular genus of plant, while other fungi, such as the Amanita, are generalists that form mycorrhizas with many different plants.[17] An individual tree may have 15 or more different fungal EcM partners at one time.[18] Thousands of ectomycorrhizal fungal species exist, hosted in over 200 genera. A recent study has conservatively estimated global ectomycorrhizal fungal species richness at approximately 7750 species, although, on the basis of estimates of knowns and unknowns in macromycete diversity, a final estimate of ECM species richness would probably be between 20,000 and 25,000.[19]

Ectomycorrhizas consist of a hyphal sheath, or mantle, covering the root tip and a Hartig net of hyphae surrounding the plant cells within the root cortex. In some cases the hyphae may also penetrate the plant cells, in which case the mycorrhiza is called an ectendomycorrhiza. Outside the root, ectomycorrhizal extramatrical mycelium forms an extensive network within the soil and leaf litter.

Nutrients can be shown to move between different plants through the fungal network. Carbon has been shown to move from paper birch seedlings into adjacent Douglas-fir seedlings, although not conclusively through a common mycorrhizal network,[20] thereby promoting succession in ecosystems.[21] The ectomycorrhizal fungus Laccaria bicolor has been found to lure and kill springtails to obtain nitrogen, some of which may then be transferred to the mycorrhizal host plant. In a study by Klironomos and Hart, Eastern White Pine inoculated with L. bicolor was able to derive up to 25% of its nitrogen from springtails.[22][23] When compared with non-mycorrhizal fine roots, ectomycorrhizae may contain very high concentrations of trace elements, including toxic metals (cadmium, silver) or chlorine.[24]

The first genomic sequence for a representative of symbiotic fungi, the ectomycorrhizal basidiomycete L. bicolor, was published in 2008.[25] An expansion of several multigene families occurred in this fungus, suggesting that adaptation to symbiosis proceeded by gene duplication. Within lineage-specific genes those coding for symbiosis-regulated secreted proteins showed an up-regulated expression in ectomycorrhizal root tips suggesting a role in the partner communication. L. bicolor is lacking enzymes involved in the degradation of plant cell wall components (cellulose, hemicellulose, pectins and pectates), preventing the symbiont from degrading host cells during the root colonisation. By contrast, L. bicolor possesses expanded multigene families associated with hydrolysis of bacterial and microfauna polysaccharides and proteins. This genome analysis revealed the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. Since then, the genomes of many other ectomycorrhizal fungal species have been sequenced further expanding the study of gene families and evolution in these organisms.[26]

Arbutoid mycorrhiza

This type of mycorrhiza involves plants of the Ericaceae subfamily Arbutoideae. It is however different from ericoid mycorrhiza and resembles ectomycorrhiza, both functionally and in terms of the fungi involved.[27] It differs from ectomycorrhiza in that some hyphae actually penetrate into the root cells, making this type of mycorrhiza an ectendomycorrhiza.[28]

Endomycorrhiza

Endomycorrhizas are variable and have been further classified as arbuscular, ericoid, arbutoid, monotropoid, and orchid mycorrhizas.[29]

Arbuscular mycorrhiza

Wheat has arbuscular mycorrhiza.

Arbuscular mycorrhizas, (formerly known as vesicular-arbuscular mycorrhizas), have hyphae that penetrate plant cells, producing dichotomously branching invaginations (arbuscules) as a means of nutrient exchange. Often, balloon-like storage structures, termed vesicles, are also produced. In this interaction, fungal hyphae do not in fact penetrate the protoplast (i.e. the interior of the cell), but invaginate the cell membrane, creating a so-called peri-arbuscular membrane. The structure of the arbuscules greatly increases the contact surface area between the hypha and the host cell cytoplasm to facilitate the transfer of nutrients between them. Arbuscular mycorrhizas are fungi that are obligate biotrophs, meaning that they use the plant host for both growth and reproduction.[30] Twenty percent of the photosynthetic products made by the plant host are consumed by the fungi, the transfer of carbon from the terrestrial host plant is then exchanged by equal amounts of phosphate from the fungi to the plant host.[31]

Arbuscular mycorrhizas are formed only by fungi in the division Glomeromycota. Fossil evidence[6] and DNA sequence analysis[32] suggest that this mutualism appeared 400-460 million years ago, when the first plants were colonizing land. Arbuscular mycorrhizas are found in 85% of all plant families, and occur in many crop species.[15] The hyphae of arbuscular mycorrhizal fungi produce the glycoprotein glomalin, which may be one of the major stores of carbon in the soil.[33] Arbuscular mycorrhizal fungi have (possibly) been asexual for many millions of years and, unusually, individuals can contain many genetically different nuclei (a phenomenon called heterokaryosis).[34]

Ericoid mycorrhiza

An ericoid mycorrhizal fungus isolated from Woollsia pungens[35]

Ericoid mycorrhizas are the third of the three more ecologically important types. They have a simple intraradical (growth in cells) phase, consisting of dense coils of hyphae in the outermost layer of root cells. There is no periradical phase and the extraradical phase consists of sparse hyphae that don't extend very far into the surrounding soil. They might form sporocarps (probably in the form of small cups), but their reproductive biology is poorly understood.[14]

Ericoid mycorrhizas have also been shown to have considerable saprotrophic capabilities, which would enable plants to receive nutrients from not-yet-decomposed materials via the decomposing actions of their ericoid partners.[36]

Orchid mycorrhiza

All orchids are myco-heterotrophic at some stage during their lifecycle, meaning that they can survive only if they form orchid mycorrhizas with basidiomycete fungi.[citation needed] Their hyphae penetrate into the root cells and form pelotons (coils) for nutrient exchange.[citation needed]

Monotropoid mycorrhiza

This type of mycorrhiza occurs in the subfamily Monotropoideae of the Ericaceae, as well as several genera in the Orchidaceae. These plants are heterotrophic or mixotrophic and derive their carbon from the fungus partner. This is thus a non-mutualistic, parasitic type of mycorrhizal symbiosis.[citation needed]

Mutualist dynamics

Nutrient exchanges and communication between a mycorrhizal fungus and plants.

Mycorrhizal fungi form a mutualistic relationship with the roots of most plant species. In such a relationship, both the plants themselves and those parts of the roots that host the fungi, are said to be mycorrhizal. Relatively few of the mycorrhizal relationships between plant species and fungi have been examined to date, but 95% of the plant families investigated are predominantly mycorrhizal either in the sense that most of their species associate beneficially with mycorrhizae, or are absolutely dependent on mycorrhizae. The Orchidaceae are notorious as a family in which the absence of the correct mycorrhizae is fatal even to germinating seeds.[37]

Recent research into ectomycorrhizal plants in boreal forests has indicated that mycorrhizal fungi and plants have a relationship that may be more complex than simply mutualistic. This relationship was noted when mycorrhizal fungi were unexpectedly found to be hoarding nitrogen from plant roots in times of nitrogen scarcity. Researchers argue that some mycorrhizae distribute nutrients based upon the environment with surrounding plants and other mycorrhizae. They go on to explain how this updated model could explain why mycorrhizae do not alleviate plant nitrogen limitation, and why plants can switch abruptly from a mixed strategy with both mycorrhizal and nonmycorrhizal roots to a purely mycorrhizal strategy as soil nitrogen availability declines.[38] It has also been suggested that evolutionary and phylogenetic relationships can explain much more variation in the strength of mycorrhizal mutualisms than ecological factors.[39]

Within mycorrhiza, the plant gives carbohydrates (products of photosynthesis) to the fungus, while the fungus gives the plant water and minerals.

Sugar-water/mineral exchange

In this mutualism, fungal hyphae (E) increase the surface area of the root and uptake of key nutrients while the plant supplies the fungi with fixed carbon (A=root cortex, B=root epidermis, C=arbuscle, D=vesicle, F=root hair, G=nuclei).

The mycorrhizal mutualistic association provides the fungus with relatively constant and direct access to carbohydrates, such as glucose and sucrose.[40] The carbohydrates are translocated from their source (usually leaves) to root tissue and on to the plant's fungal partners. In return, the plant gains the benefits of the mycelium's higher absorptive capacity for water and mineral nutrients, partly because of the large surface area of fungal hyphae, which are much longer and finer than plant root hairs, and partly because some such fungi can mobilize soil minerals unavailable to the plants' roots. The effect is thus to improve the plant's mineral absorption capabilities.[41]

Unaided plant roots may be unable to take up nutrients that are chemically or physically immobilised; examples include phosphate ions and micronutrients such as iron. One form of such immobilization occurs in soil with high clay content, or soils with a strongly basic pH. The mycelium of the mycorrhizal fungus can, however, access many such nutrient sources, and make them available to the plants they colonize.[42] Thus, many plants are able to obtain phosphate without using soil as a source. Another form of immobilisation is when nutrients are locked up in organic matter that is slow to decay, such as wood, and some mycorrhizal fungi act directly as decay organisms, mobilising the nutrients and passing some onto the host plants; for example, in some dystrophic forests, large amounts of phosphate and other nutrients are taken up by mycorrhizal hyphae acting directly on leaf litter, bypassing the need for soil uptake.[43] Inga alley cropping, an agroforestry technique proposed as an alternative to slash and burn rainforest destruction,[44] relies upon mycorrhiza within the root system of species of Inga to prevent the rain from washing phosphorus out of the soil.[45]

In some more complex relationships, mycorrhizal fungi do not just collect immobilised soil nutrients, but connect individual plants together by mycorrhizal networks that transport water, carbon, and other nutrients directly from plant to plant through underground hyphal networks.[46]

Suillus tomentosus, a basidiomycete fungus, produces specialized structures known as tuberculate ectomycorrhizae with its plant host lodgepole pine (Pinus contorta var. latifolia). These structures have been shown to host nitrogen fixing bacteria which contribute a significant amount of nitrogen and allow the pines to colonize nutrient-poor sites.[47]

Mechanisms

The mechanisms by which mycorrhizae increase absorption include some that are physical and some that are chemical. Physically, most mycorrhizal mycelia are much smaller in diameter than the smallest root or root hair, and thus can explore soil material that roots and root hairs cannot reach, and provide a larger surface area for absorption. Chemically, the cell membrane chemistry of fungi differs from that of plants. For example, they may secrete organic acids that dissolve or chelate many ions, or release them from minerals by ion exchange.[48] Mycorrhizae are especially beneficial for the plant partner in nutrient-poor soils.[49]

Disease, drought and salinity resistance and its correlation to mycorrhizae

Mycorrhizal plants are often more resistant to diseases, such as those caused by microbial soil-borne pathogens. These associations have been found to assist in plant defense both above and belowground. Mycorrhizas have been found to excrete enzymes that are toxic to soil borne organisms such as nematodes.[50] More recent studies have shown that mycorrhizal associations result in a priming effect of plants that essentially acts as a primary immune response. When this association is formed a defense response is activated similarly to the response that occurs when the plant is under attack. As a result of this inoculation, defense responses are stronger in plants with mycorrhizal associations.[51] Ecosystem services provided by mycorrhizal fungi may depend on the soil microbiome.[52] Furthermore, mycorrhizal fungi was significantly correlated with soil physical variable, but only with water level and not with aggregate stability[53][54] and can lead also to more resistant to the effects of drought.[55][56][57] Moreover, the significance of mycorrhizal fungi also includes alleviation of salt stress and its beneficial effects on plant growth and productivity. Although salinity can negatively affect mycorrhizal fungi, many reports show improved growth and performance of mycorrhizal plants under salt stress conditions.[58]

Resistance to insects

Plants connected by mycorrhizal fungi in mycorrhizal networks can use these underground connections to communicate warning signals.[59][60] For example, when a host plant is attacked by an aphid, the plant signals surrounding connected plants of its condition. Both the host plant and those connected to it release volatile organic compounds that repel aphids and attract parasitoid wasps, predators of aphids.[59] This assists the mycorrhizal fungi by conserving its food supply.[59]

Colonization of barren soil

Plants grown in sterile soils and growth media often perform poorly without the addition of spores or hyphae of mycorrhizal fungi to colonise the plant roots and aid in the uptake of soil mineral nutrients.[61] The absence of mycorrhizal fungi can also slow plant growth in early succession or on degraded landscapes.[62] The introduction of alien mycorrhizal plants to nutrient-deficient ecosystems puts indigenous non-mycorrhizal plants at a competitive disadvantage.[63] This aptitude to colonize barren soil is defined by the category Oligotroph.

Resistance to toxicity

Fungi have a protective role for plants rooted in soils with high metal concentrations, such as acidic and contaminated soils. Pine trees inoculated with Pisolithus tinctorius planted in several contaminated sites displayed high tolerance to the prevailing contaminant, survivorship and growth.[64] One study discovered the existence of Suillus luteus strains with varying tolerance of zinc. Another study discovered that zinc-tolerant strains of Suillus bovinus conferred resistance to plants of Pinus sylvestris. This was probably due to binding of the metal to the extramatricial mycelium of the fungus, without affecting the exchange of beneficial substances.[63]

Occurrence of mycorrhizal associations

Mycorrhizas are present in 92% of plant families studied (80% of species),[15] with arbuscular mycorrhizas being the ancestral and predominant form,[15] and the most prevalent symbiotic association found in the plant kingdom.[40] The structure of arbuscular mycorrhizas has been highly conserved since their first appearance in the fossil record,[6] with both the development of ectomycorrhizas, and the loss of mycorrhizas, evolving convergently on multiple occasions.[15]

Associations of fungi with the roots of plants have been known since at least the mid-19th century. However early observers simply recorded the fact without investigating the relationships between the two organisms.[65] This symbiosis was studied and described by Franciszek Kamieński in 1879–1882.[66][67]

Climate change

CO2 released by human activities is causing climate change and possible damage to mycorrhizae, but the direct effect of an increase in the gas should be to benefit plants and mycorrhizae.[68] In Arctic regions, nitrogen and water are harder for plants to obtain, making mycorrhizae crucial to plant growth.[69] Since mycorrhizae tend to do better in cooler temperatures, warming could be detrimental to them.[70] Gases such as SO2, NO-x, and O3 produced by human activity may harm mycorrhizae, causing reduction in "propagules, the colonization of roots, degradation in connections between trees, reduction in the mycorrhizal incidence in trees, and reduction in the enzyme activity of ectomycorrhizal roots."[71]

Conservation and mapping

In 2021 the Society for the Protection of Underground Networks was launched. SPUN is a science-based initiative to map and protect the mycorrhizal networks that regulate the Earth’s climate and ecosystems. The stated goals of SPUN are mapping, protecting, and harnessing mycorrhizal fungi.

See also

References

  1. ^ Deacon, Jim. "The Microbial World: Mycorrhizas". bio.ed.ac.uk (archived). Archived from the original on 2025-08-08. Retrieved 11 January 2019.
  2. ^ Kirk, P. M.; Cannon, P. F.; David, J. C.; Stalpers, J. (2001). Ainsworth and Bisby's Dictionary of the Fungi (9th ed.). Wallingford, UK: CAB International.
  3. ^ Wu, Qiang-Sheng, ed. (2017). Arbuscular Mycorrhizas and Stress Tolerance of Plants (1st ed.). Springer Singapore. p. 1. doi:10.1007/978-981-10-4115-0. ISBN 978-981-10-4115-0.
  4. ^ Johnson, N. C.; Graham, J. H.; Smith, F. A. (1997). "Functioning of mycorrhizal associations along the mutualism–parasitism continuum". New Phytologist. 135 (4): 575–585. doi:10.1046/j.1469-8137.1997.00729.x. S2CID 42871574.
  5. ^ Kottke, I.; Nebel, M. (2005). "The evolution of mycorrhiza‐like associations in liverworts: An update". New Phytologist. 167 (2): 330–334. doi:10.1111/j.1469-8137.2005.01471.x. PMID 15998388.
  6. ^ a b c d Remy, W.; Taylor, T. N.; Hass, H.; Kerp, H. (6 December 1994). "Four hundred-million-year-old vesicular arbuscular mycorrhizae". Proceedings of the National Academy of Sciences. 91 (25): 11841–11843. Bibcode:1994PNAS...9111841R. doi:10.1073/pnas.91.25.11841. PMC 45331. PMID 11607500.
  7. ^ Fortin, J. André; et al. (2015). Les Mycorhizes (second ed.). Versaillles: Inra. p. 10. ISBN 978-2-7592-2433-3.
  8. ^ Harris, Brogan J.; Clark, James W.; Schrempf, Dominik; Sz?ll?si, Gergely J.; Donoghue, Philip C. J.; Hetherington, Alistair M.; Williams, Tom A. (2025-08-08). "Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants". Nature Ecology & Evolution. 6 (11): 1634–1643. doi:10.1038/s41559-022-01885-x. PMC 9630106. PMID 36175544.
  9. ^ Puginier, Camille; Keller, Jean; Delaux, Pierre-Marc (2025-08-08). "Plant–microbe interactions that have impacted plant terrestrializations". Plant Physiology. 190 (1): 72–84. doi:10.1093/plphys/kiac258. PMC 9434271. PMID 35642902.
  10. ^ Miyauchi, Shingo; Kiss, Enik?; Kuo, Alan; et al. (2020). "Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits". Nature Communications. 11 (1): 5125. Bibcode:2020NatCo..11.5125M. doi:10.1038/s41467-020-18795-w. PMC 7550596. PMID 33046698.
  11. ^ Provorov, N. A.; Shtark, O. Yu; Dolgikh, E. A. (2016). "[Evolution of nitrogen-fixing symbioses based on the migration of bacteria from mycorrhizal fungi and soil into the plant tissues]". Zhurnal Obshchei Biologii. 77 (5): 329–345. PMID 30024143.
  12. ^ Brundrett, Mark C.; Tedersoo, Leho (2018). "Evolutionary history of mycorrhizal symbioses and global host plant diversity". New Phytologist. 220 (4): 1108–1115. doi:10.1111/nph.14976. PMID 29355963.
  13. ^ Harley, J. L.; Smith, S. E. 1983. Mycorrhizal symbiosis (1st ed.). Academic Press, London.
  14. ^ a b Allen, Michael F. 1991. The ecology of mycorrhizae. Cambridge University Press, Cambridge.
  15. ^ a b c d e Wang, B.; Qiu, Y.-L. (July 2006). "Phylogenetic distribution and evolution of mycorrhizas in land plants". Mycorrhiza. 16 (5): 299–363. doi:10.1007/s00572-005-0033-6. PMID 16845554. S2CID 30468942.
  16. ^ "Orchids and fungi: An unexpected case of symbiosis". American Journal of Botany. July 12, 2011. Archived from the original on 2025-08-08. Retrieved 24 July 2012.
  17. ^ den Bakker, Henk C.; Zuccarello, G. C.; Kuyper, Th. W.; Noordeloos, M. E. (July 2004). "Evolution and host specificity in the ectomycorrhizal genus Leccinum". New Phytologist. 163 (1): 201–215. doi:10.1111/j.1469-8137.2004.01090.x. PMID 33873790.
  18. ^ Saari, S. K.; Campbell, C. D.; Russell, J.; Alexander, I. J.; Anderson, I. C. (14 October 2004). "Pine microsatellite markers allow roots and ectomycorrhizas to be linked to individual trees". New Phytologist. 165 (1): 295–304. doi:10.1111/j.1469-8137.2004.01213.x. PMID 15720641.
  19. ^ Rinaldi, A. C.; Comandini, O.; Kuyper, T. W. (2008). "Ectomycorrhizal fungal diversity: separating the wheat from the chaff" (PDF). Fungal Diversity. 33: 1–45. Archived (PDF) from the original on 2025-08-08. Retrieved 2025-08-08.
  20. ^ Karst, Justine; Jones, Melanie D.; Hoeksema, Jason D. (2025-08-08). "Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests". Nature Ecology & Evolution. 7 (4): 501–511. doi:10.1038/s41559-023-01986-1. ISSN 2397-334X. PMID 36782032. S2CID 256845005.
  21. ^ Simard, Suzanne W.; Perry, David A.; Jones, Melanie D.; Myrold, David D.; Durall, Daniel M. & Molina, Randy (1997). "Net transfer of carbon between ectomycorrhizal tree species in the field". Nature. 388 (6642): 579–582. Bibcode:1997Natur.388..579S. doi:10.1038/41557. S2CID 4423207.
  22. ^ Fungi kill insects and feed host plants BNET.com
  23. ^ Klironomos, J. N.; Hart, M. M. (2001). "Animal nitrogen swap for plant carbon". Nature. 410 (6829): 651–652. Bibcode:2001Natur.410..651K. doi:10.1038/35070643. PMID 11287942. S2CID 4418192.
  24. ^ Cejpková, J.; Gryndler, M.; Hr?elová, H.; Kotrba, P.; ?anda, Z.; Greňová, I.; Borovi?ka, J. (2016). "Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area". Environmental Pollution. 218: 176–185. doi:10.1016/j.envpol.2016.08.009. PMID 27569718.
  25. ^ Martin, F.; Aerts, A.; et al. (2008). "The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis" (PDF). Nature. 452 (7183): 88–92. Bibcode:2008Natur.452...88M. doi:10.1038/nature06556. PMID 18322534.
  26. ^ Miyauchi, Shingo; Kiss, Enik?; Kuo, Alan; Drula, Elodie; Kohler, Annegret; Sánchez-García, Marisol; Morin, Emmanuelle; Andreopoulos, Bill; Barry, Kerrie W.; Bonito, Gregory; Buée, Marc; Carver, Akiko; Chen, Cindy; Cichocki, Nicolas; Clum, Alicia (2025-08-08). "Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits". Nature Communications. 11 (1): 5125. Bibcode:2020NatCo..11.5125M. doi:10.1038/s41467-020-18795-w. ISSN 2041-1723. PMC 7550596. PMID 33046698.
  27. ^ Brundrett, Mark (2004). "Diversity and classification of mycorrhizal associations". Biological Reviews. 79 (3). Wiley: 473–495. doi:10.1017/s1464793103006316. ISSN 1464-7931. PMID 15366760. S2CID 33371246.
  28. ^ "Some plants may depend more on friendly fungi than own leaves: Study". Business Standard. Press Trust of India. 20 October 2019.
  29. ^ Peterson, R. L.; Massicotte, H. B. & Melville, L. H. (2004). Mycorrhizas: anatomy and cell biology. National Research Council Research Press. ISBN 978-0-660-19087-7. Archived from the original on 2025-08-08.
  30. ^ Lanfranco, Luisa; Bonfante, Paola; Genre, Andrea (2025-08-08). Heitman, Joseph; Howlett, Barbara J. (eds.). "The Mutualistic Interaction between Plants and Arbuscular Mycorrhizal Fungi". Microbiology Spectrum. 4 (6): 4.6.14. doi:10.1128/microbiolspec.FUNK-0012-2016. hdl:2318/1627235. ISSN 2165-0497. PMID 28087942.
  31. ^ Kiers, E. Toby; Duhamel, Marie; Beesetty, Yugandhar; Mensah, Jerry A.; Franken, Oscar; Verbruggen, Erik; Fellbaum, Carl R.; Kowalchuk, George A.; Hart, Miranda M.; Bago, Alberto; Palmer, Todd M.; West, Stuart A.; Vandenkoornhuyse, Philippe; Jansa, Jan; Bücking, Heike (2025-08-08). "Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis". Science. 333 (6044): 880–882. Bibcode:2011Sci...333..880K. doi:10.1126/science.1208473. ISSN 0036-8075. PMID 21836016. S2CID 44812991.
  32. ^ Simon, L.; Bousquet, J.; Lévesque, R. C.; Lalonde, M. (1993). "Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants". Nature. 363 (6424): 67–69. Bibcode:1993Natur.363...67S. doi:10.1038/363067a0. S2CID 4319766.
  33. ^ International Institute for Applied Systems Analysis (2025-08-08). "Plants and fungi together could slow climate change". phys.org -us. Retrieved 2025-08-08.
  34. ^ Hijri, M.; Sanders, I. R. (2005). "Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei". Nature. 433 (7022): 160–163. Bibcode:2005Natur.433..160H. doi:10.1038/nature03069. PMID 15650740. S2CID 4416663.
  35. ^ Midgley, DJ; Chambers, SM; Cairney, J. W. G. (2002). "Spatial distribution of fungal endophyte genotypes in a Woollsia pungens (Ericaceae) root system". Australian Journal of Botany. 50 (5): 559–565. doi:10.1071/BT02020.
  36. ^ Read, D. J. & Perez-Moreno, J. (2003). "Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance?". New Phytologist. 157 (3): 475–492. doi:10.1046/j.1469-8137.2003.00704.x. PMID 33873410.
  37. ^ Trappe, J. M. (1987). "Phylogenetic and ecologic aspects of mycotrophy in the angiosperms from an evolutionary standpoint". In Safir, G. R. (ed.). Ecophysiology of VA Mycorrhizal Plants. Florida: CRC Press.
  38. ^ Franklin, O.; N?sholm, T.; H?gberg, P.; H?gberg, M. N. (2014). "Forests trapped in nitrogen limitation - an ecological market perspective on ectomycorrhizal symbiosis". New Phytologist. 203 (2): 657–666. doi:10.1111/nph.12840. PMC 4199275. PMID 24824576.
  39. ^ Hoeksema, Jason D.; Bever, James D.; Chakraborty, Sounak; Chaudhary, V. Bala; Gardes, Monique; Gehring, Catherine A.; Hart, Miranda M.; Housworth, Elizabeth Ann; Kaonongbua, Wittaya; Klironomos, John N.; Lajeunesse, Marc J.; Meadow, James; Milligan, Brook G.; Piculell, Bridget J.; Pringle, Anne; Rúa, Megan A.; Umbanhowar, James; Viechtbauer, Wolfgang; Wang, Yen-Wen; Wilson, Gail W. T.; Zee, Peter C. (16 August 2018). "Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism". Communications Biology. 1 (1): 116. doi:10.1038/s42003-018-0120-9. PMC 6123707. PMID 30271996.
  40. ^ a b Harrison, M. J. (2005). "Signaling in the arbuscular mycorrhizal symbiosis". Annu Rev Microbiol. 59: 19–42. doi:10.1146/annurev.micro.58.030603.123749. PMID 16153162.
  41. ^ Selosse, M. A.; Richard, F.; He, X.; Simard, S. W. (2006). "Mycorrhizal networks: des liaisons dangereuses?". Trends in Ecology and Evolution. 21 (11): 621–628. doi:10.1016/j.tree.2006.07.003. PMID 16843567.
  42. ^ Li, H.; Smith, S. E.; Holloway, R. E.; Zhu, Y.; Smith, F. A. (2006). "Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses". New Phytologist. 172 (3): 536–543. doi:10.1111/j.1469-8137.2006.01846.x. PMID 17083683.
  43. ^ Hogan, C.M. (2011). "Phosphate". In Jorgensen, A.; Cleveland, C.J. (eds.). Encyclopedia of Earth. Washington DC: National Council for Science and the Environment. Archived from the original on 2025-08-08.
  44. ^ Elkan, D. (21 April 2004). "Slash-and-burn farming has become a major threat to the world's rainforest". The Guardian.
  45. ^ "What is Inga alley cropping?". rainforestsaver.org. Archived from the original on 2025-08-08.
  46. ^ Simard, S.W.; Beiler, K.J.; Bingham, M.A.; Deslippe, J.R.; Philip, L.J.; Teste, F.P. (April 2012). "Mycorrhizal networks: mechanisms, ecology and modelling". Fungal Biology Reviews. 26 (1): 39–60. doi:10.1016/j.fbr.2012.01.001.
  47. ^ Paul, L. R.; Chapman, B. K.; Chanway, C. P. (1 June 2007). "Nitrogen Fixation Associated with Suillus tomentosus Tuberculate Ectomycorrhizae on Pinus contorta var. latifolia". Annals of Botany. 99 (6): 1101–1109. doi:10.1093/aob/mcm061. PMC 3243579. PMID 17468111.
  48. ^ Sylvia, David M.; Fuhrmann, Jeffry J.; Hartel, Peter G.; Zuberer, David A. (2005). "Overview of Mycorrhizal Symbioses". Principles and Applications of Soil Microbiology. Pearson Prentice Hall. ISBN 978-0-13-094117-6. Archived from the original on June 23, 2010.
  49. ^ "Botany online: Interactions - Plants - Fungi - Parasitic and Symbiotic Relations - Mycorrhiza". Biologie.uni-hamburg.de. Archived from the original on 2025-08-08. Retrieved 2025-08-08.
  50. ^ Azcón-Aguilar, C.; Barea, J. M. (29 October 1996). "Arbuscular mycorrhizas and biological control of soil-borne plant pathogens – an overview of the mechanisms involved". Mycorrhiza. 6 (6): 457–464. doi:10.1007/s005720050147. S2CID 25190159.
  51. ^ Jung, Sabine C.; Martinez-Medina, Ainhoa; Lopez-Raez, Juan A.; Pozo, Maria J. (24 May 2012). "Mycorrhiza-Induced Resistance and Priming of Plant Defenses". J Chem Ecol. 38 (6): 651–664. doi:10.1007/s10886-012-0134-6. PMID 22623151. S2CID 12918193.
  52. ^ Svenningsen, Nanna B; Watts-Williams, Stephanie J; Joner, Erik J; Battini, Fabio; Efthymiou, Aikaterini; Cruz-Paredes, Carla; Nybroe, Ole; Jakobsen, Iver (May 2018). "Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota". The ISME Journal. 12 (5): 1296–1307. doi:10.1038/s41396-018-0059-3. PMC 5931975. PMID 29382946.
  53. ^ Zeng, Ren-Sen (2006). "Disease Resistance in Plants Through Mycorrhizal Fungi Induced Allelochemicals". Allelochemicals: Biological Control of Plant Pathogens and Diseases. Disease Management of Fruits and Vegetables. Vol. 2. pp. 181–192. doi:10.1007/1-4020-4447-X_10. ISBN 1-4020-4445-3.
  54. ^ "Dr. Susan Kaminskyj: Endorhizal Fungi". Usask.ca. Archived from the original on 2025-08-08. Retrieved 2025-08-08.
  55. ^ "Dr. Davies Research Page". Aggie-horticulture.tamu.edu. Archived from the original on 2025-08-08. Retrieved 2025-08-08.
  56. ^ Lehto, Tarja (1992). "Mycorrhizas and Drought Resistance of Picea sitchensis (Bong.) Carr. I. In Conditions of Nutrient Deficiency". New Phytologist. 122 (4): 661–668. doi:10.1111/j.1469-8137.1992.tb00094.x. JSTOR 2557434.
  57. ^ Nikolaou, N.; Angelopoulos, K.; Karagiannidis, N. (2003). "Effects of Drought Stress on Mycorrhizal and Non-Mycorrhizal Cabernet Sauvignon Grapevine, Grafted Onto Various Rootstocks". Experimental Agriculture. 39 (3): 241–252. doi:10.1017/S001447970300125X. S2CID 84997899.
  58. ^ Porcel, Rosa; Aroca, Ricardo; Ruiz-Lozano, Juan Manuel (January 2012). "Salinity stress alleviation using arbuscular mycorrhizal fungi. A review" (PDF). Agronomy for Sustainable Development. 32 (1): 181–200. doi:10.1007/s13593-011-0029-x. S2CID 8572482.
  59. ^ a b c Babikova, Zdenka; Gilbert, Lucy; Bruce, Toby J. A.; Birkett, Michael; Caulfield, John C.; Woodcock, Christine; Pickett, John A.; Johnson, David (July 2013). "Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack". Ecology Letters. 16 (7): 835–843. doi:10.1111/ele.12115. PMID 23656527.
  60. ^ Johnson, David; Gilbert, Lucy (March 2015). "Interplant signalling through hyphal networks". New Phytologist. 205 (4): 1448–1453. doi:10.1111/nph.13115. PMID 25421970.
  61. ^ "Root fungi turn rock into soil". Planet Earth Online. 3 July 2009. Archived from the original on 2025-08-08.
  62. ^ Jeffries, Peter; Gianinazzi, Silvio; Perotto, Silvia; Turnau, Katarzyna; Barea, José-Miguel (January 2003). "The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility". Biology and Fertility of Soils. 37 (1): 1–16. doi:10.1007/s00374-002-0546-5. S2CID 20792333. INIST 14498927.
  63. ^ a b Richardson, David M. (2000). Ecology and biogeography of Pinus. London: Cambridge University Press. p. 336. ISBN 978-0-521-78910-3.
  64. ^ Tam, Paul C.F. (1995). "Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius". Mycorrhiza. 5 (3): 181–187. doi:10.1007/BF00203335. hdl:10722/48503. S2CID 23867901.
  65. ^ Rayner, M. Cheveley (1915). "Obligate Symbiosis in Calluna vulgaris". Annals of Botany. 29 (113): 97–134. doi:10.1093/oxfordjournals.aob.a089540.
  66. ^ Kamieński, Franciszek (1882). "Les organes végétatifs de Monotropa hypopitys L."" [The vegetative organs of Monotropa hypopitys L.]. Mémoires de la Société nat. Des Sciences naturelles et mathém. De Cherbourg (in French). 3 (24).. Berch, S. M.; Massicotte, H. B.; Tackaberry, L. E. (July 2005). "Re-publication of a translation of 'The vegetative organs of Monotropa hypopitys L.' published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas". Mycorrhiza. 15 (5): 323–32. doi:10.1007/s00572-004-0334-1. PMID 15549481. S2CID 3162281.
  67. ^ Kamieński, Franciszek (1885). "über die auf Wurzelsymbiose beruhende Ern?hrung gewisser B?ume durch unterirdische Pilze" [On the nourishing, via root symbiosis, of certain trees by underground fungi]. Berichte der Deutschen Botanischen Gesellschaft (in German). 3: 128–145. From p. 129: "Der ganze K?rper ist also weder Baumwurzel noch Pilz allein, sondern ?hnlich wie der Thallus der Flechten, eine Vereinigung zweier verschiedener Wesen zu einem einheitlichen morphologischen Organ, welches vielleicht passend als Pilzwurzel, Mycorhiza bezeichnet werden kann." (The whole body is thus neither tree root nor fungus alone, but similar to the thallus of lichens, a union of two different organisms into a single morphological organ, which can be aptly designated as a "fungus root", a mycorrhiza.)
  68. ^ Monz, C. A.; Hunt, H. W.; Reeves, F. B.; Elliott, E. T. (1994). "The response of mycorrhizal colonization to elevated CO2 and climate change in Pascopyrum smithii and Bouteloua gracilis". Plant and Soil. 165 (1): 75–80. doi:10.1007/bf00009964. S2CID 34893610.
  69. ^ Hobbie, John E.; Hobbie, Erik A.; Drossman, Howard; et al. (2009). "Mycorrhizal fungi supply nitrogen to host plants in Arctic tundra and boreal forests: 15N is the key signal". Canadian Journal of Microbiology. 55 (1): 84–94. doi:10.1139/w08-127. hdl:1912/2902. PMID 19190704.
  70. ^ Heinemeyer, A.; Fitter, A. H. (22 January 2004). "Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth responses of the host plant and its AM fungal partner". Journal of Experimental Botany. 55 (396): 525–534. doi:10.1093/jxb/erh049. PMID 14739273.
  71. ^ Xavier, L. J.; Germida, J. J. (1999). "Impact of human activities on mycorrhizae". Proceedings of the 8th International Symposium on Microbial Ecology.
石榴花什么时候开 羊水指数是什么意思 风热感冒是什么意思 维c不能和什么一起吃 吃鸡什么意思
勾心斗角是什么生肖 什么是肝脏纤维化 宠物邮寄用什么快递 烤鸭为什么那么便宜 耳鸣吃什么药效果最好
风月是什么意思 婴儿外阴粘连挂什么科 上发条是什么意思 崛起是什么意思 肚脐眼下面痛什么原因
7月12日是什么日子 什么是生酮饮食 尿骚味重是什么原因 产成品是什么意思 9月份出生的是什么星座
武汉有什么玩的hcv7jop5ns2r.cn 黄瓜是什么科hcv9jop4ns9r.cn 鳝鱼吃什么hcv9jop4ns7r.cn 什么的李子hcv7jop5ns2r.cn 鼻塞一直不好什么原因hcv9jop2ns5r.cn
梦见上香是什么意思hcv8jop9ns3r.cn 雪芽是什么茶bfb118.com 拼图用什么软件hcv9jop0ns2r.cn 9.10是什么星座hcv8jop7ns2r.cn 喝茶喝多了有什么坏处hcv9jop4ns1r.cn
丑是什么意思hcv8jop2ns1r.cn 洁尔阴洗液有什么作用hcv9jop0ns5r.cn 什么昆虫最值钱hcv8jop6ns7r.cn 左脸颊长痘是什么原因hcv9jop2ns1r.cn sle是什么病的缩写hcv8jop7ns5r.cn
淋巴肉为什么不能吃hcv8jop7ns7r.cn 拔罐拔出水是什么原因hcv7jop5ns1r.cn 吃四方是什么生肖hcv7jop9ns0r.cn 柱镜是什么意思hcv8jop5ns4r.cn 怠工是什么意思hcv8jop3ns8r.cn
百度