什么的故事填词语| 女人脚浮肿是什么原因| 老年人睡眠多是什么原因| 什么草药可以止痒| 雪糕是什么做的| 神经内科主要看什么病| nf是什么意思| 散瞳是什么| 鸭肫是鸭的什么部位| 绎什么意思| 知了代表什么生肖| 安居乐业是什么意思| 鲷鱼是什么鱼| 9月24号是什么星座| 晒伤涂什么| 为什么一吹空调就鼻塞| 肾精亏虚是什么意思| 乙肝核心抗体阳性是什么意思| 国字五行属什么| 射精什么感觉| 蓝矾对人有什么危害| 去草原穿什么衣服拍照好看| 胸膜炎是什么症状| 青什么黄什么| 1983年出生是什么命| 一路顺风是什么生肖| 六指是什么原因导致的| 夏至吃什么传统食物| 甲沟炎是什么原因引起的| 胃肠彩超能检查出什么| 10度左右穿什么衣服合适| 肛周湿疹用什么药膏效果好| 灌肠是什么意思| 兔子拉稀是什么原因| sma是什么病| 梦到公鸡是什么意思| 观赏是什么意思| 吃绝户是什么意思| 人流后需要注意什么| ada是什么意思| 眼睛黑色部分叫什么| 毒是什么意思| 脑供血不足用什么药好| 股骨长是什么意思| nda是什么意思| 人间四月芳菲尽的尽是什么意思| 笑刑是什么| 6月9号什么星座| 维生素c对身体有什么好处| 严重失眠吃什么药| 香港奶粉为什么限购| 奔是什么生肖| 95年猪是什么命| 7月23是什么星座| 世界上最难的数学题是什么| 1889年属什么生肖| 睡眠不好吃什么药最有效| 检查幽门螺旋杆菌挂什么科| 银杏是什么植物| 睾丸变小是什么原因| 三个代表代表了什么| 立事牙疼吃什么药| 四叶草是什么意思| 什么时候喝牛奶最好| 口水臭是什么原因引起的| 什么叫认知| 男生射精什么感觉| 肝郁气滞血瘀吃什么药| 德巴金是什么药| 胃癌早期有什么症状| 这个字叫什么| 看守所和拘留所有什么区别| apl医学上是什么意思| 血痰是什么原因| 筋膜提升术是什么| 小孩支气管炎吃什么药| 拔罐是什么原理| 3月3日什么星座| 八段锦什么时候练最好| 殿后和垫后有什么区别| 内火重吃什么药见效快| 梦见买袜子是什么意思| 高血压不能吃什么水果| 上呼吸道感染吃什么药| 疳积是什么| 小太阳是什么牌子| 早泄要吃什么药| o型b型生的孩子是什么血型| 10月15号是什么星座| 指桑骂槐是什么生肖| 拉肚子吃什么| 为什么得疱疹病毒| 吃驼奶粉有什么好处| 白带过氧化氢阳性什么意思| 嗓子疼吃什么药好| 梦见自己洗头发是什么意思| twins是什么意思| 胆固醇高吃什么药| 什么止疼药见效最快| 吃什么长内膜最快最有效| 有始无终是什么生肖| 98年是什么命| 为什么心细的男人危险| 1945年属什么| 大腿外侧是什么经络| 心率快是什么原因引起的| 锰酸钾是什么颜色| 89年五行属什么| 女属羊和什么属相最配| 去医院看心理挂什么科| 9月9日是什么星座| bdsm什么意思| 日干是什么| 女无是什么字| 后脑勺疼吃什么药| 吃饭掉筷子有什么预兆| 什么叫四大皆空| 朋友的意义是什么| 额头上长痘是什么原因| 小排畸什么时候做| 乌鸡白凤丸有什么功效| 富硒对人体有什么好处| 宫颈炎吃什么药最好| 爸爸的爸爸叫什么儿歌| 淋巴细胞比率低是什么意思| 来月经同房会有什么后果| 脂肪酶是什么| 小孩容易出汗是什么原因| 海狗是什么动物| 外阴瘙痒什么原因| 心衰挂什么科| 染发膏用什么能洗掉| 什么叫更年期| 獐子是什么动物| 放热屁是什么原因| 茶寿为什么是108岁| 痔疮肛瘘是什么症状| 叶什么什么龙| 冒菜和麻辣烫有什么区别| 南京有什么好玩的地方| 无聊可以干什么| 阿鼻地狱是什么意思| 韦编三绝什么意思| 痔疮发痒是什么原因| 怀孕上火吃什么降火| 股骨头在什么位置| 乳腺结节吃什么散结快| 你喜欢什么| 杀手锏是什么意思| 食品级pp材质是什么| 一什么声音| 为什么下雨会打雷| 冯巩什么军衔| 繁字五行属什么| 什么是修养| 玉米淀粉可以做什么| 什么的星空| 补体c3偏高说明什么| 苦荞茶适合什么人喝| 什么是扁平疣图片| 鸟喙是什么意思| 肝火是什么原因引起的| 吃什么助于长高| 草字头有什么字| 胃得宁又叫什么名字| 什么样的人容易得结石| 胸口堵得慌是什么原因| 言音读什么| 单纯性苔藓是什么病| 姓兰的是什么民族| 女生喝什么茶好| 什么东西补肾| 燥热是什么意思| 脉沉细是什么意思| 甲亢适合吃什么食物| 十九畏是什么意思| 喝水都长肉是什么原因| 苦瓜泡水喝有什么好处| 五行代表什么意思| mrcp检查是什么意思| 鸡冲什么生肖| cold什么意思| 什么地跳| 疱疹用什么药膏| 碳酸钠呈什么性| 什么是社会考生| 小猫咪能吃什么| 蜂蜜不能和什么食物一起吃| 蚕豆病是什么病有什么症状| 孕妇梦见老公出轨是什么意思| 云是什么生肖| 燕窝有什么好处| 舌根发麻是什么原因| 什么是肩袖损伤| 腰肌劳损是什么意思| 不置可否什么意思| 大便出血是什么原因引起的| 碧绿的什么| 百花齐放是什么生肖| 凉粉是什么原料做的| 牛奶能做什么美食| 笑什么| 脑子嗡嗡响是什么原因| 卤蛋是什么意思| 小心眼什么意思| 过期的酸奶有什么用途| 女朱读什么| 屑是什么意思| 阳虚什么症状| 股票roe是什么意思| 什么是脂溢性脱发| 口腔苦味是什么原因| gm什么意思| 验尿能检查出什么| 工装裤搭配什么上衣| 艳阳高照是什么生肖| 枣子什么时候成熟| 古天乐属什么生肖| 2003年什么年| maby什么意思| 米线用什么做的| 10月15日什么星座| 朱砂是什么| 它是什么用英语怎么说| 老子叫什么名字| 炸膛什么意思| 嘴唇起白皮是什么原因| 易孕期是什么意思| 为什么抽烟| 蜜蜡是什么材质| 优越感是什么意思| 肌肉拉伤吃什么药| 梦见老板是什么意思| 独在异乡为异客是什么节日| 危楼是什么意思| 房奴什么意思| 小孩吃鼻屎是什么原因| ct是什么| 天人合一是什么意思| asp是什么氨基酸| 人突然消瘦是什么原因| 珍珠五行属什么| 十五岁是什么年华| adr是什么激素| 耳蜗是什么东西| 金字旁的有什么字| 行货是什么意思| 汗斑用什么药擦最有效| 12月26日什么星座| 勇者胜的上半句是什么| 贴黄瓜片对皮肤有什么好处| col是什么的缩写| 扫把和什么是一套的| 什么是子宫憩室| 舌头裂缝是什么原因| 杜甫号什么| 三月什么星座| 中央委员是什么级别| 膀胱不充盈什么意思| 80年出生属什么生肖| 吃什么东西容易消化| 手没有力气是什么原因| 坐镇是什么意思| 肾错构瘤是什么原因引起的| 百度Jump to content

艾灸后放屁多是什么原因

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia
百度 曹磊表示,大多数传统跨境电商线下体验店暴露出的三大问题值得关注,一是传统跨境电商线下体验店出于成本考虑,大多不在优势商圈或者商场黄金地段;二是有限的门店面积很难做到比较全面的产品展示;三是线下体验店工作人员业务水平至关重要,如果工作人员对品牌或者产品不具备一定水平的认知,很难将产品优势介绍给消费者,难以实现销售转化。

Flowering plant
Temporal range: Early Cretaceous (Valanginian)-Recent
Terrestrial: buttercup
Aquatic: water lily
Wind-pollinated: grass
Insect-pollinated: apple
Tree: oak
Forb: orchid
Diversity of angiosperms
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Spermatophytes
Clade: Angiosperms
Groups (APG IV)[1]

Basal angiosperms

Core angiosperms

Synonyms

Flowering plants are plants that bear flowers and fruits, and form the clade Angiospermae (/??nd?i??sp?rmi?/).[5][6] The term angiosperm is derived from the Greek words ?γγε?ον (angeion; 'container, vessel') and σπ?ρμα (sperma; 'seed'), meaning that the seeds are enclosed within a fruit. The group was formerly called Magnoliophyta.[7]

Angiosperms are by far the most diverse group of land plants with 64 orders, 416 families, approximately 13,000 known genera and 300,000 known species.[8] They include all forbs (flowering plants without a woody stem), grasses and grass-like plants, a vast majority of broad-leaved trees, shrubs and vines, and most aquatic plants. Angiosperms are distinguished from the other major seed plant clade, the gymnosperms, by having flowers, xylem consisting of vessel elements instead of tracheids, endosperm within their seeds, and fruits that completely envelop the seeds. The ancestors of flowering plants diverged from the common ancestor of all living gymnosperms before the end of the Carboniferous, over 300 million years ago. In the Cretaceous, angiosperms diversified explosively, becoming the dominant group of plants across the planet.

Agriculture is almost entirely dependent on angiosperms, and a small number of flowering plant families supply nearly all plant-based food and livestock feed. Rice, maize and wheat provide half of the world's staple calorie intake, and all three plants are cereals from the Poaceae family (colloquially known as grasses). Other families provide important industrial plant products such as wood, paper and cotton, and supply numerous ingredients for drinks, sugar production, traditional medicine and modern pharmaceuticals. Flowering plants are also commonly grown for decorative purposes, with certain flowers playing significant cultural roles in many societies.

Out of the "Big Five" extinction events in Earth's history, only the Cretaceous–Paleogene extinction event occurred while angiosperms dominated plant life on the planet. Today, the Holocene extinction affects all kingdoms of complex life on Earth, and conservation measures are necessary to protect plants in their habitats in the wild (in situ), or failing that, ex situ in seed banks or artificial habitats like botanic gardens. Otherwise, around 40% of plant species may become extinct due to human actions such as habitat destruction, introduction of invasive species, unsustainable logging, land clearing and overharvesting of medicinal or ornamental plants. Further, climate change is starting to impact plants and is likely to cause many species to become extinct by 2100.

Distinguishing features

[edit]

Angiosperms are terrestrial vascular plants; like the gymnosperms, they have roots, stems, leaves, and seeds. They differ from other seed plants in several ways.

Feature Description Image
Flowers The reproductive organs of flowering plants, not found in any other seed plants.[9]
A Narcissus flower in section. Petals and sepals are replaced here by a fused tube, the corona, and tepals.
Reduced gametophytes, three cells in male, seven cells with eight nuclei in female (except for basal angiosperms)[10] The gametophytes are smaller than those of gymnosperms.[11] The smaller size of the pollen reduces the time between pollination and fertilization, which in gymnosperms is up to a year.[12]
Embryo sac is a reduced female gametophyte.
Endosperm Endosperm forms after fertilization but before the zygote divides. It provides food for the developing embryo, the cotyledons, and sometimes the seedling.[13]
Closed carpel enclosing the ovules. Once the ovules are fertilised, the carpels, often with surrounding tissues, develop into fruits. Gymnosperms have unenclosed seeds.[14]
Peas (seeds, from ovules) inside pod (fruit, from fertilised carpel).
Xylem made of vessel elements Open vessel elements are stacked end to end to form continuous tubes, whereas gymnosperm xylem is made of tapered tracheids connected by small pits.[15]
Xylem vessels (long tubes).

Diversity

[edit]

Ecological diversity

[edit]

The largest angiosperms are Eucalyptus gum trees of Australia, and Shorea faguetiana, dipterocarp rainforest trees of Southeast Asia, both of which can reach almost 100 metres (330 ft) in height.[16] The smallest are Wolffia duckweeds which float on freshwater, each plant less than 2 millimetres (0.08 in) across.[17]

Considering their method of obtaining energy, some 99% of flowering plants are photosynthetic autotrophs, deriving their energy from sunlight and using it to create molecules such as sugars. The remainder are parasitic, whether on fungi like the orchids for part or all of their life-cycle,[18] or on other plants, either wholly like the broomrapes, Orobanche, or partially like the witchweeds, Striga.[19]

In terms of their environment, flowering plants are cosmopolitan, occupying a wide range of habitats on land, in fresh water and in the sea. On land, they are the dominant plant group in every habitat except for frigid moss-lichen tundra and coniferous forest.[20] The seagrasses in the Alismatales grow in marine environments, spreading with rhizomes that grow through the mud in sheltered coastal waters.[21]

Some specialised angiosperms are able to flourish in extremely acid or alkaline habitats. The sundews, many of which live in nutrient-poor acid bogs, are carnivorous plants, able to derive nutrients such as nitrate from the bodies of trapped insects.[22] Other flowers such as Gentiana verna, the spring gentian, are adapted to the alkaline conditions found on calcium-rich chalk and limestone, which give rise to often dry topographies such as limestone pavement.[23]

As for their growth habit, the flowering plants range from small, soft herbaceous plants, often living as annuals or biennials that set seed and die after one or two growing seasons,[24] to large perennial woody trees that may live for many centuries and grow to many metres in height. Some species grow tall without being self-supporting like trees by climbing on other plants in the manner of vines or lianas.[25]

Taxonomic diversity

[edit]

The number of species of flowering plants is estimated to be in the range of 250,000 to 400,000.[26][27][28] This compares to around 12,000 species of moss[29] and 11,000 species of pteridophytes.[30] The APG system seeks to determine the number of families, mostly by molecular phylogenetics. In the 2009 APG III there were 415 families.[31] The 2016 APG IV added five new orders (Boraginales, Dilleniales, Icacinales, Metteniusales and Vahliales), along with some new families, for a total of 64 angiosperm orders and 416 families.[1]

The diversity of flowering plants is not evenly distributed. Nearly all species belong to the eudicot (75%), monocot (23%), and magnoliid (2%) clades. The remaining five clades contain a little over 250 species in total; i.e. less than 0.1% of flowering plant diversity, divided among nine families. The 25 most species-rich of 443 families,[32] containing over 166,000 species between them in their APG circumscriptions, are:

The 25 largest angiosperm families[32]
Group Family English name No. of spp.
1 Eudicot Asteraceae or Compositae daisy 22,750
2 Monocot Orchidaceae orchid 21,950
3 Eudicot Fabaceae or Leguminosae pea, legume 19,400
4 Eudicot Rubiaceae madder 13,150[33]
5 Monocot Poaceae or Gramineae grass 10,035
6 Eudicot Lamiaceae or Labiatae mint 7,175
7 Eudicot Euphorbiaceae spurge 5,735
8 Eudicot Melastomataceae melastome 5,005
9 Eudicot Myrtaceae myrtle 4,625
10 Eudicot Apocynaceae dogbane 4,555
11 Monocot Cyperaceae sedge 4,350
12 Eudicot Malvaceae mallow 4,225
13 Monocot Araceae arum 4,025
14 Eudicot Ericaceae heath 3,995
15 Eudicot Gesneriaceae gesneriad 3,870
16 Eudicot Apiaceae or Umbelliferae parsley 3,780
17 Eudicot Brassicaceae or Cruciferae cabbage 3,710
18 Magnoliid dicot Piperaceae pepper 3,600
19 Monocot Bromeliaceae bromeliad 3,540
20 Eudicot Acanthaceae acanthus 3,500
21 Eudicot Rosaceae rose 2,830
22 Eudicot Boraginaceae borage 2,740
23 Eudicot Urticaceae nettle 2,625
24 Eudicot Ranunculaceae buttercup 2,525
25 Magnoliid dicot Lauraceae laurel 2,500

Evolution

[edit]

History of classification

[edit]
From 1736, an illustration of Linnaean classification

The botanical term "angiosperm", from Greek words angeíon (?γγε?ον 'bottle, vessel') and spérma (σπ?ρμα 'seed'), was coined in the form "Angiospermae" by Paul Hermann in 1690, including only flowering plants whose seeds were enclosed in capsules.[34] The term angiosperm fundamentally changed in meaning in 1827 with Robert Brown, when angiosperm came to mean a seed plant with enclosed ovules.[35][36] In 1851, with Wilhelm Hofmeister's work on embryo-sacs, Angiosperm came to have its modern meaning of all the flowering plants including Dicotyledons and Monocotyledons.[36][37] The APG system[31] treats the flowering plants as an unranked clade without a formal Latin name (angiosperms). A formal classification was published alongside the 2009 revision in which the flowering plants rank as the subclass Magnoliidae.[38] From 1998, the Angiosperm Phylogeny Group (APG) has reclassified the angiosperms, with updates in the APG II system in 2003,[39] the APG III system in 2009,[31][40] and the APG IV system in 2016.[1]

Phylogeny

[edit]

External

[edit]

In 2019, a molecular phylogeny of plants placed the flowering plants in their evolutionary context:[41]

Embryophytes

Bryophytes

Tracheophytes

Lycophytes

Ferns

Spermatophytes
Gymnosperms

conifers and allies
Angiosperms

flowering plants
seed plants
vascular plants
land plants

Internal

[edit]

The main groups of living angiosperms are:[42][1]

 Angiosperms 

Amborellales 1 sp. New Caledonia shrub

Nymphaeales c. 80 spp.[43] water lilies & allies

Austrobaileyales c. 100 spp.[43] woody plants

Magnoliids c. 10,000 spp.[43] 3-part flowers, 1-pore pollen, usu. branch-veined leaves

Chloranthales 77 spp.[44] Woody, apetalous

Monocots c. 70,000 spp.[45] 3-part flowers, 1 cotyledon, 1-pore pollen, usu. parallel-veined leaves  

Ceratophyllales c. 6 spp.[43] aquatic plants

Eudicots c. 175,000 spp.[43] 4- or 5-part flowers, 3-pore pollen, usu. branch-veined leaves

In 2024, Alexandre R. Zuntini and colleagues constructed a tree of some 6,000 flowering plant genera, representing some 60% of the existing genera, on the basis of analysis of 353 nuclear genes in each specimen. Much of the existing phylogeny is confirmed; the rosid phylogeny is revised.[46]

Tree of Angiosperm phylogeny 2024

Fossil history

[edit]
Adaptive radiation in the Cretaceous created many flowering plants, such as Sagaria in the Ranunculaceae.

Fossilised spores suggest that land plants (embryophytes) have existed for at least 475 million years.[47] However, angiosperms appear suddenly and in great diversity in the fossil record in the Early Cretaceous (~130 mya).[48][49] Claimed records of flowering plants prior to this are not widely accepted,[50] as all supposed pre-Cretaceous “flowers” can be explained through being misidentifications of other seed plants. Furthermore, almost all of these controversial fossils are described in papers co-authored by the researcher Xin Wang, such as the particularly debated Nanjinganthus.[51] Molecular evidence suggests that the ancestors of angiosperms diverged from the gymnosperms during the late Devonian, about 365 million years ago.[52] The origin time of the crown group of flowering plants remains contentious.[53] By the Late Cretaceous, angiosperms appear to have dominated environments formerly occupied by ferns and gymnosperms. Large canopy-forming trees replaced conifers as the dominant trees close to the end of the Cretaceous, 66 million years ago.[54] The radiation of herbaceous angiosperms occurred much later.[55]

Reproduction

[edit]

Flowers

[edit]
Angiosperm flower showing reproductive parts and life cycle

The characteristic feature of angiosperms is the flower. Its function is to ensure fertilization of the ovule and development of fruit containing seeds.[56] It may arise terminally on a shoot or from the axil of a leaf.[57] The flower-bearing part of the plant is usually sharply distinguished from the leaf-bearing part, and forms a branch-system called an inflorescence.[37]

Flowers produce two kinds of reproductive cells. Microspores, which divide to become pollen grains, are the male cells; they are borne in the stamens.[58] The female cells, megaspores, divide to become the egg cell. They are contained in the ovule and enclosed in the carpel; one or more carpels form the pistil.[58]

The flower may consist only of these parts, as in wind-pollinated plants like the willow, where each flower comprises only a few stamens or two carpels.[37] In insect- or bird-pollinated plants, other structures protect the sporophylls and attract pollinators. The individual members of these surrounding structures are known as sepals and petals (or tepals in flowers such as Magnolia where sepals and petals are not distinguishable from each other). The outer series (calyx of sepals) is usually green and leaf-like, and functions to protect the rest of the flower, especially the bud.[59][60] The inner series (corolla of petals) is, in general, white or brightly colored, is more delicate in structure, and attracts pollinators by colour, scent, and nectar.[61][62]

Most flowers are hermaphroditic, producing both pollen and ovules in the same flower, but some use other devices to reduce self-fertilization. Heteromorphic flowers have carpels and stamens of differing lengths, so animal pollinators cannot easily transfer pollen between them. Homomorphic flowers may use a biochemical self-incompatibility to discriminate between self and non-self pollen grains. Dioecious plants such as holly have male and female flowers on separate plants.[63] Monoecious plants have separate male and female flowers on the same plant; these are often wind-pollinated,[64] as in maize,[65] but include some insect-pollinated plants such as Cucurbita squashes.[66][67]

Fertilisation and embryogenesis

[edit]

Double fertilization requires two sperm cells to fertilise cells in the ovule. A pollen grain sticks to the stigma at the top of the pistil, germinates, and grows a long pollen tube. A haploid generative cell travels down the tube behind the tube nucleus. The generative cell divides by mitosis to produce two haploid (n) sperm cells. The pollen tube grows from the stigma, down the style and into the ovary. When it reaches the micropyle of the ovule, it digests its way into one of the synergids, releasing its contents including the sperm cells. The synergid that the cells were released into degenerates; one sperm makes its way to fertilise the egg cell, producing a diploid (2n) zygote. The second sperm cell fuses with both central cell nuclei, producing a triploid (3n) cell. The zygote develops into an embryo; the triploid cell develops into the endosperm, the embryo's food supply. The ovary develops into a fruit and each ovule into a seed.[68]

Fruit and seed

[edit]
The fruit of the horse chestnut tree, showing the large seed inside the fruit, which is dehiscing or splitting open.

As the embryo and endosperm develop, the wall of the embryo sac enlarges and combines with the nucellus and integument to form the seed coat. The ovary wall develops to form the fruit or pericarp, whose form is closely associated with type of seed dispersal system.[69]

Other parts of the flower often contribute to forming the fruit. For example, in the apple, the hypanthium forms the edible flesh, surrounding the ovaries which form the tough cases around the seeds.[70]

Apomixis, setting seed without fertilization, is found naturally in about 2.2% of angiosperm genera.[71] Some angiosperms, including many citrus varieties, are able to produce fruits through a type of apomixis called nucellar embryony.[72]

Sexual selection

[edit]
Sexual selection is natural selection arising through preference by one sex for certain characteristics in individuals of the other sex. It is a common concept in animal evolution but, with plants, it is often overlooked because many plants are hermaphrodites. Flowering plants have many sexually selected characteristics. For example, flower symmetry, nectar production, floral structure, and inflorescences are among the secondary sex characteristics acted upon by sexual selection. Sexual dimorphisms and reproductive organs can also be affected by sexual selection.[73]

Adaptive function of flowers

[edit]

Charles Darwin in his 1878 book The Effects of Cross and Self-Fertilization in the Vegetable Kingdom[74] in the initial paragraph of chapter XII noted "The first and most important of the conclusions which may be drawn from the observations given in this volume, is that generally cross-fertilisation is beneficial and self-fertilisation often injurious, at least with the plants on which I experimented." Flowers emerged in plant evolution as an adaptation for the promotion of cross-fertilisation (outcrossing), a process that allows the masking of deleterious mutations in the genome of progeny. The masking effect is known as genetic complementation.[75] Meiosis in flowering plants provides a direct mechanism for repairing DNA through genetic recombination in reproductive tissues.[76] Sexual reproduction appears to be required for maintaining long-term genomic integrity and only infrequent combinations of extrinsic and intrinsic factors permit shifts to asexuality.[76] Thus the two fundamental aspects of sexual reproduction in flowering plants, cross-fertilization (outcrossing) and meiosis appear to be maintained respectively by the advantages of genetic complementation and recombinational repair.[75]

Human uses

[edit]

Practical uses

[edit]
Harvesting rice in Arkansas, 2020
Food from plants: a dish of Dal tadka, Indian lentil soup

Agriculture is almost entirely dependent on angiosperms, which provide virtually all plant-based food and fodder for livestock. Much of this food derives from a small number of flowering plant families.[77] For instance, half of the world's calorie intake is supplied by just three plants – wheat, rice and maize.[78]

Major food-providing families[77]
Family English Example foods from that family
Poaceae Grasses, cereals Most feedstocks, inc. rice, maize, wheat, barley, rye, oats, pearl millet, sugar cane, sorghum
Fabaceae Legumes, pea family Peas, beans, lentils; for animal feed, clover, alfalfa
Solanaceae Nightshade family Potatoes, tomatoes, peppers, aubergines
Cucurbitaceae Gourd family Squashes, cucumbers, pumpkins, melons
Brassicaceae Cabbage family Cabbage and its varieties, e.g. Brussels sprout, broccoli; mustard; oilseed rape
Apiaceae Parsley family Parsnip, carrot, parsley, coriander, fennel, cumin, caraway
Rutaceae Rue family[79] Oranges, lemons, grapefruits
Rosaceae Rose family[80] Apples, pears, cherries, apricots, plums, peaches

Flowering plants provide a diverse range of materials in the form of wood, paper, fibers such as cotton, flax, and hemp, medicines such as digoxin and opioids, and decorative and landscaping plants. Coffee and hot chocolate are beverages from flowering plants (in the Rubiaceae and Malvaceae respectively).[77]

Cultural uses

[edit]
Bird-and-flower painting: Kingfisher and iris kachō-e woodblock print by Ohara Koson (late 19th century)

Both real and fictitious plants play a wide variety of roles in literature and film.[81] Flowers are the subjects of many poems by poets such as William Blake, Robert Frost, and Rabindranath Tagore.[82] Bird-and-flower painting (Huaniaohua) is a kind of Chinese painting that celebrates the beauty of flowering plants.[83] Flowers have been used in literature to convey meaning by authors including William Shakespeare.[84] Flowers are used in a variety of art forms which arrange cut or living plants, such as bonsai, ikebana, and flower arranging. Ornamental plants have sometimes changed the course of history, as in tulipomania.[85] Many countries and regions have floral emblems; a survey of 70 of these found that the most popular flowering plant family for such emblems is Orchidaceae at 15.7% (11 emblems), followed by Fabaceae at 10% (7 emblems), and Asparagaceae, Asteraceae, and Rosaceae all at 5.7% (4 emblems each).[86]

Conservation

[edit]
Viola calcarata, a species highly vulnerable to climate change.[87]

Human impact on the environment has driven a range of species extinct and is threatening even more today. Multiple organizations such as IUCN and Royal Botanic Gardens, Kew suggest that around 40% of plant species are threatened with extinction.[88] The majority are threatened by habitat loss, but activities such as logging of wild timber trees and collection of medicinal plants, or the introduction of non-native invasive species, also play a role.[89][90][91]


Relatively few plant diversity assessments currently consider climate change,[88] yet it is starting to impact plants as well. About 3% of flowering plants are very likely to be driven extinct within a century at 2 °C (3.6 °F) of global warming, and 10% at 3.2 °C (5.8 °F).[92] In worst-case scenarios, half of all tree species may be driven extinct by climate change over that timeframe.[88]

Conservation in this context is the attempt to prevent extinction, whether in situ by protecting plants and their habitats in the wild, or ex situ in seed banks or as living plants.[89] Some 3000 botanic gardens around the world maintain living plants, including over 40% of the species known to be threatened, as an "insurance policy against extinction in the wild."[93] The United Nations' Global Strategy for Plant Conservation asserts that "without plants, there is no life".[94] It aims to "halt the continuing loss of plant diversity" throughout the world.[94]

References

[edit]
  1. ^ a b c d e APG 2016.
  2. ^ Cronquist 1960.
  3. ^ Reveal, James L. (2011) [or later]. "Indices Nominum Supragenericorum Plantarum Vascularium – M". Archived from the original on 27 August 2013. Retrieved 28 August 2017.
  4. ^ Takhtajan 1964.
  5. ^ Lindley, J. (1830). Introduction to the Natural System of Botany. London: Longman, Rees, Orme, Brown, and Green. xxxvi. Archived from the original on 27 August 2017. Retrieved 29 January 2018.
  6. ^ Cantino, Philip D.; Doyle, James A.; Graham, Sean W.; et al. (2007). "Towards a phylogenetic nomenclature of Tracheophyta". Taxon. 56 (3): E1 – E44. doi:10.2307/25065865. JSTOR 25065865.
  7. ^ Takhtajan 1980.
  8. ^ Christenhusz, M. J. M.; Byng, J. W. (2016). "The number of known plants species in the world and its annual increase". Phytotaxa. 261 (3): 201–217. Bibcode:2016Phytx.261..201C. doi:10.11646/phytotaxa.261.3.1. Archived from the original on 6 April 2017. Retrieved 21 February 2022.
  9. ^ "Angiosperms | OpenStax Biology 2e". courses.lumenlearning.com. Archived from the original on 19 July 2021. Retrieved 19 July 2021.
  10. ^ Friedman, William E.; Ryerson, Kirsten C. (2009). "Reconstructing the ancestral female gametophyte of angiosperms: Insights from Amborella and other ancient lineages of flowering plants". American Journal of Botany. 96 (1): 129–143. Bibcode:2009AmJB...96..129F. doi:10.3732/ajb.0800311. PMID 21628180.
  11. ^ Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. (2005). Biology of Plants. W. H. Freeman. pp. 376–. ISBN 978-0-7167-1007-3.
  12. ^ Williams, Joseph H. (2012). "The evolution of pollen germination timing in flowering plants: Austrobaileya scandens (Austrobaileyaceae)". AoB Plants. 2012: pls010. doi:10.1093/aobpla/pls010. PMC 3345124. PMID 22567221.
  13. ^ Baroux, C.; Spillane, C.; Grossniklaus, U. (2002). "Evolutionary origins of the endosperm in flowering plants". Genome Biology. 3 (9) reviews1026.1: reviews1026.1. doi:10.1186/gb-2002-3-9-reviews1026. PMC 139410. PMID 12225592.
  14. ^ Gon?alves, Beatriz (15 December 2021). "Case not closed: the mystery of the origin of the carpel". EvoDevo. 12 (1) 14. doi:10.1186/s13227-021-00184-z. ISSN 2041-9139. PMC 8672599. PMID 34911578.
  15. ^ Baas, Pieter (1982). "Systematic, phylogenetic, and ecological wood anatomy — History and perspectives". New Perspectives in Wood Anatomy. Forestry Sciences. Vol. 1. Dordrecht: Springer Netherlands. pp. 23–58. doi:10.1007/978-94-017-2418-0_2. ISBN 978-90-481-8269-5. ISSN 0924-5480.
  16. ^ "Menara, yellow meranti, Shorea". Guinness World Records. 6 January 2019. Retrieved 8 May 2023. yellow meranti (Shorea faguetiana) ... 98.53 m (323 ft 3.1 in) tall ... swamp gum (Eucalyptus regnans) ... In 2014, it had a tape-drop height of 99.82 m (327 ft 5.9 in)
  17. ^ "The Charms of Duckweed". Missouri Botanical Garden. 25 November 2009. Archived from the original on 25 November 2009. Retrieved 5 July 2022.
  18. ^ Leake, J.R. (1994). "The biology of myco-heterotrophic ('saprophytic') plants". New Phytologist. 127 (2): 171–216. Bibcode:1994NewPh.127..171L. doi:10.1111/j.1469-8137.1994.tb04272.x. PMID 33874520. S2CID 85142620.
  19. ^ Westwood, James H.; Yoder, John I.; Timko, Michael P.; dePamphilis, Claude W. (2010). "The evolution of parasitism in plants". Trends in Plant Science. 15 (4): 227–235. Bibcode:2010TPS....15..227W. doi:10.1016/j.tplants.2010.01.004. ISSN 1360-1385. PMID 20153240.
  20. ^ "Angiosperms". University of Nevada, Las Vegas. Retrieved 6 May 2023.
  21. ^ Kendrick, Gary A.; Orth, Robert J.; Sinclair, Elizabeth A.; Statton, John (2022). "Effect of climate change on regeneration of seagrasses from seeds". Plant Regeneration from Seeds. pp. 275–283. doi:10.1016/b978-0-12-823731-1.00011-1. ISBN 978-0-1282-3731-1.
  22. ^ a b Karlsson, P. S.; Pate, J. S. (1992). "Contrasting effects of supplementary feeding of insects or mineral nutrients on the growth and nitrogen and phosphorous economy of pygmy species of Drosera". Oecologia. 92 (1): 8–13. Bibcode:1992Oecol..92....8K. doi:10.1007/BF00317256. PMID 28311806. S2CID 13038192.
  23. ^ a b Pardoe, H. S. (1995). Mountain Plants of the British Isles. National Museum of Wales. p. 24. ISBN 978-0-7200-0423-6.
  24. ^ Hart, Robin (1977). "Why are Biennials so Few?". The American Naturalist. 111 (980): 792–799. Bibcode:1977ANat..111..792H. doi:10.1086/283209. JSTOR 2460334. S2CID 85343835.
  25. ^ Rowe, Nick; Speck, Thomas (12 January 2005). "Plant growth forms: an ecological and evolutionary perspective". New Phytologist. 166 (1): 61–72. Bibcode:2005NewPh.166...61R. doi:10.1111/j.1469-8137.2004.01309.x. ISSN 0028-646X. PMID 15760351.
  26. ^ Thorne, R.F. (2002). "How many species of seed plants are there?". Taxon. 51 (3): 511–522. Bibcode:2002Taxon..51..511T. doi:10.2307/1554864. JSTOR 1554864.
  27. ^ Scotland, R. W.; Wortley, A. H. (2003). "How many species of seed plants are there?". Taxon. 52 (1): 101–104. Bibcode:2003Taxon..52..101S. doi:10.2307/3647306. JSTOR 3647306.
  28. ^ Govaerts, R. (2003). "How many species of seed plants are there? – a response". Taxon. 52 (3): 583–584. Bibcode:2003Taxon..52..583G. doi:10.2307/3647457. JSTOR 3647457.
  29. ^ Goffinet, Bernard; Buck, William R. (2004). "Systematics of the Bryophyta (Mosses): From molecules to a revised classification". Monographs in Systematic Botany. 98: 205–239.
  30. ^ Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. (2005). Biology of Plants (7th ed.). New York: W. H. Freeman and Company. ISBN 0-7167-1007-2.
  31. ^ a b c APG 2009.
  32. ^ a b Stevens, P. F. (2011). "Angiosperm Phylogeny Website (at Missouri Botanical Garden)". Archived from the original on 20 January 2022. Retrieved 21 February 2022.
  33. ^ "Kew Scientist 30" (PDF). October 2006. Archived from the original (PDF) on 27 September 2007.
  34. ^ Balfour & Rendle 1911, p. 9.
  35. ^ Brown, Robert (1827). "Character and description of Kingia, a new genus of plants found on the southwest coast of New Holland: with observations on the structure of its unimpregnated ovulum; and on the female flower of Cycadeae and Coniferae". In King, Philip Parker (ed.). Narrative of a Survey of the Intertropical and Western Coasts of Australia: Performed Between the Years 1818 and 1822. J. Murray. pp. 534–565. OCLC 185517977.
  36. ^ a b Buggs, Richard J.A. (January 2021). "The origin of Darwin's "abominable mystery"". American Journal of Botany. 108 (1): 22–36. doi:10.1002/ajb2.1592. PMID 33482683. S2CID 231689158.
  37. ^ a b c Balfour & Rendle 1911, p. 10.
  38. ^ Chase & Reveal 2009.
  39. ^ APG 2003.
  40. ^ "As easy as APG III – Scientists revise the system of classifying flowering plants" (Press release). The Linnean Society of London. 8 October 2009. Archived from the original on 26 November 2010. Retrieved 2 October 2009.
  41. ^ Leebens-Mack, M.; Barker, M.; Carpenter, E.; et al. (2019). "One thousand plant transcriptomes and the phylogenomics of green plants". Nature. 574 (7780): 679–685. doi:10.1038/s41586-019-1693-2. PMC 6872490. PMID 31645766.
  42. ^ Guo, Xing (26 November 2021). "Chloranthus genome provides insights into the early diversification of angiosperms". Nature Communications. 12 (1) 6930. Bibcode:2021NatCo..12.6930G. doi:10.1038/s41467-021-26922-4. PMC 8626473. PMID 34836973.
  43. ^ a b c d e Palmer, Jeffrey D.; Soltis, Douglas E.; Chase, Mark W. (October 2004). "The plant tree of life: an overview and some points of view". American Journal of Botany. 91 (10): 1437–45. doi:10.3732/ajb.91.10.1437. PMID 21652302., Figure 2 Archived 2 February 2011 at the Wayback Machine
  44. ^ Christenhusz, Maarten J. M.; Fay, Michael F.; Chase, Mark W. (2017). Plants of the World: An Illustrated Encyclopedia of Vascular Plants. University of Chicago Press. p. 114. ISBN 978-0-226-52292-0.
  45. ^ Massoni, Julien; Couvreur, Thomas L.P.; Sauquet, Hervé (18 March 2015). "Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms)". BMC Evolutionary Biology. 15 (1): 49. Bibcode:2015BMCEE..15...49M. doi:10.1186/s12862-015-0320-6. PMC 4377182. PMID 25887386.
  46. ^ Zuntini, Alexandre R.; Carruthers, Tom; Maurin, Olivier; Bailey, Paul C.; Leempoel, Kevin; Brewer, Grace E.; et al. (24 April 2024). "Phylogenomics and the rise of the angiosperms". Nature. 629 (8013): 843–850. Bibcode:2024Natur.629..843Z. doi:10.1038/s41586-024-07324-0. ISSN 0028-0836. PMC 11111409. PMID 38658746.
  47. ^ Edwards, D. (June 2000). "The role of mid-palaeozoic mesofossils in the detection of early bryophytes". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 355 (1398): 733–54, discussion 754–5. doi:10.1098/rstb.2000.0613. PMC 1692787. PMID 10905607.
  48. ^ Herendeen, Patrick S.; Friis, Else Marie; Pedersen, Kaj Raunsgaard; Crane, Peter R. (3 March 2017). "Palaeobotanical redux: revisiting the age of the angiosperms". Nature Plants. 3 (3): 17015. Bibcode:2017NatPl...317015H. doi:10.1038/nplants.2017.15. ISSN 2055-0278. PMID 28260783. S2CID 205458714.
  49. ^ Friedman, William E. (January 2009). "The meaning of Darwin's "abominable mystery"". American Journal of Botany. 96 (1): 5–21. Bibcode:2009AmJB...96....5F. doi:10.3732/ajb.0800150. PMID 21628174.
  50. ^ Bateman, Richard M (1 January 2020). Ort, Donald (ed.). "Hunting the Snark: the flawed search for mythical Jurassic angiosperms". Journal of Experimental Botany. 71 (1): 22–35. doi:10.1093/jxb/erz411. ISSN 0022-0957. PMID 31538196.
  51. ^ Sokoloff, Dmitry D.; Remizowa, Margarita V.; El, Elena S.; Rudall, Paula J.; Bateman, Richard M. (October 2020). "Supposed Jurassic angiosperms lack pentamery, an important angiosperm-specific feature". New Phytologist. 228 (2): 420–426. Bibcode:2020NewPh.228..420S. doi:10.1111/nph.15974. PMID 31418869.
  52. ^ Stull, Gregory W.; Qu, Xiao-Jian; Parins-Fukuchi, Caroline; et al. (19 July 2021). "Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms". Nature Plants. 7 (8): 1015–1025. Bibcode:2021NatPl...7.1015S. doi:10.1038/s41477-021-00964-4. PMID 34282286. S2CID 236141481. Archived from the original on 10 January 2022. Retrieved 10 January 2022.
  53. ^ Sauquet, Hervé; Ramírez-Barahona, Santiago; Magallón, Susana (24 June 2022). Melzer, Rainer (ed.). "What is the age of flowering plants?". Journal of Experimental Botany. 73 (12): 3840–3853. doi:10.1093/jxb/erac130. ISSN 0022-0957. PMID 35438718.
  54. ^ Sadava, David; Heller, H. Craig; Orians, Gordon H.; et al. (December 2006). Life: the science of biology. Macmillan. pp. 477–. ISBN 978-0-7167-7674-1. Archived from the original on 23 December 2011. Retrieved 4 August 2010.
  55. ^ Stewart, Wilson Nichols; Rothwell, Gar W. (1993). Paleobotany and the evolution of plants (2nd ed.). Cambridge University Press. p. 498. ISBN 978-0-521-23315-6.
  56. ^ Willson, Mary F. (1 June 1979). "Sexual Selection in Plants". The American Naturalist. 113 (6): 777–790. Bibcode:1979ANat..113..777W. doi:10.1086/283437. S2CID 84970789. Archived from the original on 9 November 2021. Retrieved 9 November 2021.
  57. ^ Bredmose, N. (2003). "Growth Regulation: Axillary Bud Growth". Encyclopedia of Rose Science. Elsevier. pp. 374–381. doi:10.1016/b0-12-227620-5/00017-3. ISBN 9780122276200.
  58. ^ a b Salisbury, Frank B.; Parke, Robert V. (1970). "Sexual Reproduction". In Salisbury, Frank B.; Parke, Robert V. (eds.). Vascular Plants: Form and Function. Fundamentals of Botany Series. London: Macmillan Education. pp. 185–195. doi:10.1007/978-1-349-00364-8_13 (inactive 1 July 2025). ISBN 978-1-349-00364-8.{{cite book}}: CS1 maint: DOI inactive as of July 2025 (link)
  59. ^ De Craene & P. 2010, p. 7.
  60. ^ D. Mauseth 2016, p. 225.
  61. ^ De Craene & P. 2010, p. 8.
  62. ^ D. Mauseth 2016, p. 226.
  63. ^ Ainsworth, C. (August 2000). "Boys and Girls Come Out to Play: The Molecular Biology of Dioecious Plants". Annals of Botany. 86 (2): 211–221. Bibcode:2000AnBot..86..211A. doi:10.1006/anbo.2000.1201.
  64. ^ Batygina, T.B. (2019). Embryology of Flowering Plants: Terminology and Concepts, Vol. 3: Reproductive Systems. CRC Press. p. 43. ISBN 978-1-4398-4436-6.
  65. ^ Bortiri, E.; Hake, S. (13 January 2007). "Flowering and determinacy in maize". Journal of Experimental Botany. 58 (5). Oxford University Press (OUP): 909–916. doi:10.1093/jxb/erm015. ISSN 0022-0957. PMID 17337752.
  66. ^ Mabberley, D. J. (2008). The Plant Book: A Portable Dictionary of the Vascular Plants. Cambridge: Cambridge University Press. p. 235. ISBN 978-0-521-82071-4.
  67. ^ "Angiosperms". Flora of China. Retrieved 21 February 2015 – via eFloras.org, Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, Cambridge, MA.
  68. ^ Berger, F. (January 2008). "Double-fertilization, from myths to reality". Sexual Plant Reproduction. 21 (1): 3–5. doi:10.1007/s00497-007-0066-4. S2CID 8928640.
  69. ^ Eriksson, O. (2008). "Evolution of Seed Size and Biotic Seed Dispersal in Angiosperms: Paleoecological and Neoecological Evidence". International Journal of Plant Sciences. 169 (7): 863–870. Bibcode:2008IJPlS.169..863E. doi:10.1086/589888. S2CID 52905335.
  70. ^ "Fruit Anatomy". Fruit & Nut Research & Information Center. University of California. Archived from the original on 2 May 2023.
  71. ^ Hojsgaard, D.; Klatt, S.; Baier, R.; et al. (September 2014). "Taxonomy and Biogeography of Apomixis in Angiosperms and Associated Biodiversity Characteristics". Critical Reviews in Plant Sciences. 33 (5): 414–427. Bibcode:2014CRvPS..33..414H. doi:10.1080/07352689.2014.898488. PMC 4786830. PMID 27019547.
  72. ^ Gentile, Alessandra (18 March 2020). The Citrus Genome. Springer Nature. p. 171. ISBN 978-3-030-15308-3. Archived from the original on 14 April 2021. Retrieved 13 December 2020.
  73. ^ Ashman, Tia-Lynn; Delph, Lynda F. (1 August 2006). "Trait selection in flowering plants: how does sexual selection contribute?". Integrative and Comparative Biology. 46 (4): 465–472. doi:10.1093/icb/icj038. PMID 21672758.
  74. ^ Darwin, Charles R. (1878). The effects of cross and self fertilisation in the vegetable kingdom (PDF). London: John Murray.
  75. ^ a b Bernstein, Harris; Byerly, Henry C.; Hopf, Frederic A.; Michod, Richard E. (20 September 1985). "Genetic Damage, Mutation, and the Evolution of Sex". Science. 229 (4719): 1277–1281. Bibcode:1985Sci...229.1277B. doi:10.1126/science.3898363. PMID 3898363.
  76. ^ a b H?randl, Elvira (7 June 2024). "Apomixis and the paradox of sex in plants" (PDF). Annals of Botany. 134 (1): 1–18. doi:10.1093/aob/mcae044. PMC 11161571. PMID 38497809. Retrieved 17 January 2025.
  77. ^ a b c Dilcher, David L.; Cronquist, Arthur; Zimmermann, Martin Huldrych; Stevens, Peter; Stevenson, Dennis William; Berry, Paul E. (8 March 2016). "Angiosperm: Significance to Humans". Encyclopedia Britannica.
  78. ^ McKie, Robin (16 July 2017). "Maize, rice, wheat: alarm at rising climate risk to vital crops". The Observer. Retrieved 30 July 2023.
  79. ^ "Rutaceae". Botanical Dermatology Database. Archived from the original on 19 July 2019.
  80. ^ Zhang, Shu-Dong; Jin, Jian-Jun; Chen, Si-Yun; et al. (2017). "Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics". New Phytologist. 214 (3): 1355–1367. Bibcode:2017NewPh.214.1355Z. doi:10.1111/nph.14461. ISSN 1469-8137. PMID 28186635.
  81. ^ "Literary Plants". Nature Plants. 1 (11) 15181. 2015. Bibcode:2015NatPl...115181.. doi:10.1038/nplants.2015.181. PMID 27251545.
  82. ^ "Flower Poems". Poem Hunter. Retrieved 21 June 2016.
  83. ^ "Nature's Song: Chinese Bird and Flower Paintings". Museum Wales. Archived from the original on 4 August 2022. Retrieved 4 August 2022.
  84. ^ "The Language of Flowers". Folger Shakespeare Library. Archived from the original on 19 September 2014. Retrieved 31 May 2013.
  85. ^ Lambert, Tim (2014). "A Brief History of Gardening". British Broadcasting Corporation. Retrieved 21 June 2016.
  86. ^ Lim, Reuben; Tan, Heok; Tan, Hugh (2013). Official Biological Emblems of the World. Singapore: Raffles Museum of Biodiversity Research. ISBN 978-9-8107-4147-1.
  87. ^ Block, Sebastián; Maechler, Marc-Jacques; Levine, Jacob I.; Alexander, Jake M.; Pellissier, Lo?c; Levine, Jonathan M. (26 August 2022). "Ecological lags govern the pace and outcome of plant community responses to 21st-century climate change". Ecology Letters. 25 (10): 2156–2166. Bibcode:2022EcolL..25.2156B. doi:10.1111/ele.14087. PMC 9804264. PMID 36028464.
  88. ^ a b c Lughadha, Eimear Nic; Bachman, Steven P.; Le?o, Tarciso C. C.; Forest, Félix; Halley, John M.; Moat, Justin; Acedo, Carmen; Bacon, Karen L.; Brewer, Ryan F. A.; Gateblé, Gildas; Gon?alves, Susana C.; Govaerts, Rafa?l; Hollingsworth, Peter M.; Krisai-Greilhuber, Irmgard; de Lirio, Elton J.; Moore, Paloma G. P.; Negr?o, Raquel; Onana, Jean Michel; Rajaovelona, Landy R.; Razanajatovo, Henintsoa; Reich, Peter B.; Richards, Sophie L.; Rivers, Malin C.; Cooper, Amanda; Iganci, Jo?o; Lewis, Gwilym P.; Smidt, Eric C.; Antonelli, Alexandre; Mueller, Gregory M.; Walker, Barnaby E. (29 September 2020). "Extinction risk and threats to plants and fungi". Plants People Planet. 2 (5): 389–408. Bibcode:2020PlPP....2..389N. doi:10.1002/ppp3.10146. hdl:10316/101227. S2CID 225274409.
  89. ^ a b "Botanic Gardens and Plant Conservation". Botanic Gardens Conservation International. Retrieved 19 July 2023.
  90. ^ Wiens, John J. (2016). "Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species". PLOS Biology. 14 (12): e2001104. doi:10.1371/journal.pbio.2001104. hdl:10150/622757. PMC 5147797. PMID 27930674.
  91. ^ Shivanna, K. R. (2019). "The 'Sixth Mass Extinction Crisis' and Its Impact on Flowering Plants". Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity. Vol. 24. Cham: Springer International Publishing. pp. 15–42. doi:10.1007/978-3-030-30746-2_2. ISBN 978-3-030-30745-5.
  92. ^ Parmesan, C., M.D. Morecroft, Y. Trisurat et al. (2022) Chapter 2: Terrestrial and Freshwater Ecosystems and Their Services in "Terrestrial and Freshwater Ecosystems and Their Services". Climate Change 2022 – Impacts, Adaptation and Vulnerability. Cambridge University Press. 2023. pp. 197–378. doi:10.1017/9781009325844.004. ISBN 978-1-009-32584-4.
  93. ^ "Plant Conservation Around the World". Cambridge University Botanic Garden. 2020. Retrieved 19 July 2023.
  94. ^ a b "Updated Global Strategy for Plant Conservation 2011–2020". Convention on Biological Diversity. 3 July 2023. Retrieved 19 July 2023.

Bibliography

[edit]

Articles, books and chapters

[edit]

Websites

[edit]
rh阳性是什么意思 隐血阳性什么意思 九月二十八是什么星座 肠炎可以吃什么食物 体细胞是什么意思
月经期间吃什么补血 性质是什么 霉菌性阴炎用什么药好得快 大连属于什么省 入睡难是什么原因
犹太人为什么叫犹太人 丹凤眼是什么样 早期肠癌有什么症状 代理是什么 广西三月三是什么节日
着床是什么意思 塑料是什么材质 孩子是ab型父母是什么血型 别人是什么意思 水稻什么时候播种
做梦梦见很多蛇是什么意思zhongyiyatai.com 320是什么意思hcv7jop9ns4r.cn 水色是什么颜色hebeidezhi.com 冰冻三尺非一日之寒什么意思yanzhenzixun.com 亚硝酸钠是什么东西helloaicloud.com
蜘蛛属于什么hcv7jop6ns1r.cn 手疼挂什么科hcv8jop3ns5r.cn 小猫踩奶是什么意思hcv8jop2ns6r.cn 0点是什么时辰hcv8jop7ns8r.cn 消化快容易饿什么原因hcv7jop7ns1r.cn
终止妊娠是什么意思hcv9jop7ns0r.cn 流口水吃什么药最好hcv9jop8ns3r.cn 右手小指戴戒指什么意思hcv8jop5ns3r.cn 鸡呜狗盗是什么生肖hcv8jop8ns2r.cn 喝酒肚子疼是什么原因hcv8jop7ns7r.cn
煜这个字读什么hcv9jop0ns6r.cn 东施效颦是什么意思shenchushe.com 额头长痘痘是什么原因hcv9jop1ns6r.cn 尿血是什么病hcv8jop1ns5r.cn 什么是宦官hcv9jop7ns5r.cn
百度